
Finite fields 

I talked in class about the field with two elements 

F2 = {0, 1} 

and we’ve used it in various examples and homework problems. In these notes I 
will introduce more finite fields 

Fp = {0, 1, . . . , p − 1} 

for every prime number p. I’ll say a little about what linear algebra looks like over 
these fields, and why you might care. 

First problem is the definition. One of the basic features of what you learned 
about in elementary school about adding and multiplying integers is that the last 
digit of the answer only depends on the last digits in the problem. So if I try to tell 
you that 27 · 38 = 1028, you know immediately that there’s a problem: because 
7 · 8 = 56, the answer must end in 6. In this way we can define addition and 
multiplication modulo ten. 

Definition 1. Suppose 0 ≤ a ≤ 9 and 0 ≤ b ≤ 9 are integers. Choose any positive 
integers A and B with last digits a and b respectively. Write x for the last digit of 
X = A +B, and y for the last digit of Y = A · B. Then addition and multiplication 
modulo 10 are defined by 

a +10 b = x, a · 10 b = y. 

Write Z/10Z for the set {0, 1, . . . , 9} endowed with this addition and multiplication. 

If the context makes the 10 unambiguous, one usually writes just + and · for 
addition and multiplication modulo 10. 

The content of the definition is that the sum and product modulo ten are well-
defined. Then we could say for example 

because 13 · 29 = 377, 3 · 10 9 = 7. 

It’s an elementary algebra exercise to check that addtion and multiplication are 
really well-defined (that is, independent of the choices of A and B); I won’t do 
that. The commutative, associative, and distributive laws are all inherited from 
Z, so they are true in Z/10Z. The element 0 is an additive identity, and additive 
inverses exist; and 1 is a multiplicative identity. The only axiom for a field that 
is missing is the existence of multiplicative inverses. Some of these inverses exist, 
even for elements having no multiplicative inverse in Z: for example 3 · 10 7 = 1, so 
7 is a multiplicative inverse of 3 in Z/10Z. 

But there is trouble right here in River City: 2 · 10 5 = 0, and it follows easily 
that the nonzero elements 2 and 5 have no multiplicative inverses. (Can you tell 
which elements of Z/10Z do have multiplicative inverses?) So Z/10Z is not a field. 

There was nothing special about 10 in this discussion. If n is any integer greater 
than 1, we can make 

1 



2 

Definition 2. Suppose 0 ≤ a < n and 0 ≤ b < n are integers. Choose any positive 
integers A and B with last digits in base n equal to a and b respectively. (This 
means that the remainder when A is divided by n is equal to a.) Write x for the 
last base n digit of X = A + B, and y for the last base n digit of Y = A · B. Then 
addition and multiplication modulo n are defined by 

a +n b = x, a · n b = y. 

Another way to say this is that x is the remainder when a + b (or A +B) is divided 
by n; and y is the remainder when a · b (or A · B) is divided by n. Write Z/nZ for 
the set {0, 1, . . . , n − 1} endowed with this addition and multiplication. 

The addition and multiplication in Z/nZ are commutative and associative and 
distributive, and we have identities 0  1 and additive inverses. (The reason 0 = 1=  
is that we are assuming n > 1.) The only question (for deciding whether Z/nZ is 
a field) is whether nonzero elements have multiplicative inverses. 

Theorem 3. With the addition and multiplication just defined, Z/nZ is a field if 
and only if n is a prime number. 

Proof. Suppose first that n is not prime: say n = r · s, with 1 < r, s < n. Then 
r · n s = 0, and it follows easily that r and s cannot have multiplicative inverses 
modulo n. So Z/nZ is not a field. 

Now assume that n = p is a prime number. We can’t make counterexamples 
in this way, but there could be a more subtle reason for Z/pZ not to be a field: 
we need to prove that every nonzero element x of Z/pZ really has a multiplicative 
inverse. 

A basic fact about prime numbers and multiplication of integers is 

if x and y are integers not divisible by p, then xy is not divisible by p. 

In terms of multiplication in Z/pZ, this means 

if x and y are nonzero in Z/pZ, then x · p y is not zero. 

Using the distributive law, we can translate this formulation to 
′ ′if 0  x ∈ Z/pZ and z  z ∈ Z/pZ, then x · p z  x · p z .= = = 

That is, if x is not zero in Z/pZ, then the p multiples of x 

{x · p 0, x · p 1, x · p 2, . . . x · p (p − 1)} 

must all be distinct. Therefore they must be all of the p elements of Z/pZ. In 
particular, one of them must be equal to 1: there is a z with 

x · p z = 1. 

This element z is the multiplicative inverse of x. QED 

The field Z/pZ is called Fp. Here is a result which connects finite fields with 
counting problems, and is one of the reasons they are so interesting. 

Theorem 4. Suppose V is an m-dimensional vector space over Fp. 
ma) The cardinality of V is |V | = p . 

Suppose T :V → W is a linear map. Write n for the dimension of the null space 
of T , and r for the dimension of the range. 



 

 

3 

rb) The cardinality of the range of T is p . 
nc) The preimage of every vector in the range of T has p elements. 

r nThis exhibits V as the union of p disjoint pieces, each of size p ; so V has 
r n n+r mp · p = p = p elements, (where n + r = m is Theorem 3.4 in the text). 

So what finite fields can exist? Suppose F is any finite field. Start with the 
element 0 ∈ F and add 1 ∈ F repeatedly, getting a string 

0, 1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1, . . . 

of elements of F . The first two elements are distinct because of the axiom 0 = 1 for 
a field. But the field is finite, so the string has to repeat itself eventually. It isn’t 
hard to see that the string must be periodic of some period n > 1: that the first n 
terms (which could naturally be called (0, 1, 2, . . . , n −1)) are all distinct, and then 

(n − 1) + 1 = 0, 

and the sequence repeats. The number n defined in this way is called the charac
teristic of the finite field F . It’s not hard to see 

Theorem 5. Suppose n is the characteristic of the finite field F . Then F contains 
Z/nZ, with the addition and multiplication given in Definition 2. In particular 
(because F has multiplicative inverses) the characteristic must be a prime number 
p, and so F contains Fp. 

The field F is then a vector space of some positive (since 1 = 0) dimension m 
mover Fp; so |F | = p . 

This much is easy. What’s a bit more subtle is 

mTheorem 6. Suppose p is a prime number, m is a positive integer, and q = p . 
mThen there is (up to isomorphism) exactly one field Fq having p elements. 

Neither the existence nor the uniqueness of Fq is obvious. Here are the addition 
and multiplication tables for F4 = {0, 1, x, x + 1}. 

+ 0 1 x 1 + x 

0 
1 
x 

1 + x 

0 
1 
x 

1 + x 

1 
0 

1 + x 
x 

x 
1 + x 
0 
1 

1 + x 
x 
1 
0 

Addition in F4 

· 0 1 x 1 + x 

0 
1 
x 

1 + x 

0 0 0 0 
0 1 x 1 + x 
0 x 1 + x 1 
0 1 + x 1 x 

Multiplication in F4 

6=

6



 

4 

Computing in finite fields 

Addition and multiplication in Fp can be done using the algorithms for Z, fol
lowed by computing the remainder after division by p. 

In order to do linear algebra, you also need to be able to invert elements of Fp. 
The proof above of the existence of multiplicative inverses is not constructive. If you 
want to write a program to do linear algebra in F379721, you don’t want to calculate 
the inverse of 17 by trying all 379720 nonzero elements of the field. One way to 
proceed is using the (extended) Euclidean algorithm. This requires approximately 
log p steps, in each of which the most complicated is a division-with-remainder of 
integers smaller than p (a calculation requiring a some multiple of log p steps). This 
could be a reasonable way to calculate inverses for p of size around 232 or 264 . For 
much larger primes, the division-with-remainder steps can slow things down enough 
that other tricks are useful. 

There is a (not very difficult) theorem saying that if 0 = a ∈ Fq, then 

−1 q−2 a = a . 

So you can compute the inverse as a power. At first glance this looks slow, since it 
asks for q − 3 multiplications. But the right way to compute powers is to compute 
the 2k powers using 

k+1 k k 

a 2 = a 2 · a 2 ; 

so log2 q multiplications to compute all of the 2k powers of a for 2k ≤ q − 2. Now 
2write q − 2 in base 2, and multiply together the a
k 
for k corresponding to the 

nonzero bits in q − 2: for example, 

25 16 8 a = a · a · a. 

This is about log2 q additional multiplications, for a total of 2 log2 q multiplications 
−1in Fq to compute a . At first glance this looks comparable to the Euclidean 

algorithm in speed, but I don’t know anything about practice.1 

For relatively small finite fields (I’ve seen this done with q ≤ 28) you can make 
a double array of values of + and ×, and do arithmetic by looking up elements of 
the array. 

Why do this? 

I know of two completely different reasons. First, many problems in mathematics 
concern integers: how many integer solutions are there to some equation? An 
integer solution automatically provides a solution in Z/nZ for every positive integer 
n, and in particular a solution in Fp for every prime number p. So people study 
equations in Fp and try to use what they learn to say something about integer 
solutions. This idea has been fantastically successful, in extremely surprising ways. 
(My own research involves some differential equations that can arise from quantum 
mechanics; I try to understand what kinds of solutions those equations can have 
mathematically, in the hope that the mathematically interesting solutions might 
have some meaning in physics. The best answers to those questions that we know 
involve counting solutions over finite fields.) 

1Yogi Berra said, “In theory there is no difference between theory and practice. In practice 

there is.” 

6=



5 

A second reason is just as a trick for computational efficiency: computations with 
big integers can be replaced by (more) computations with small integers, saving 
memory. Here is an example. Suppose you want to solve a linear algebra problem 
(like a system of a hundred simultaneous equations in a hundred unknowns, with 
integer coefficients). Suppose you know that all the (ten thousand) coefficients in 
your equations are smaller than 263, and that your hundred integer solutions are all 
smaller than 263 . You need 8 bytes of memory for each of the 10, 000 coefficients, 
and 8 for each of the 100 solutions: 80, 800 bytes of memory altogether. (That’s 
not so much, but you can change 100 to a billion if you like.) 

Here’s another way to proceed. Solve these same equations in Z/nZ, for each of 
the nine values 

n = 229, 233, 239, 241, 247, 251, 253, 255, 256. 

At each step, each number in your calculation is smaller than 256, and so fits in one 
byte of memory; so the calculation requires just 10,100 bytes of memory (saving 
a factor of eight). Because the arithmetic involves smaller numbers, you can hope 
that each calculation is faster than the original with 8-byte integers; but in any 
case you’ve slowed down by no worse than a factor of nine. 

At the end, your nine solutions in Z/nZ can be combined by the Chinese Re
mainder Theorem to give a solution in Z/NZ, where 

N = 229 · 233 · 239 · 241 · 247 · 251 · 253 · 255 · 256. 

This combined solution is the reduction module N of the actual integer solution 
you wanted. Because N > 264, there is no reduction: you have found an exact 
integer solution of your problem. 

So you have managed to reduce your use of memory by a factor of 8 at the cost 
of increasing time by a factor of about 9 (or less if you can do small arithmetic 
faster). This is sometimes a good bargain. 



MIT OpenCourseWare
http://ocw.mit.edu

18.700 Linear Algebra
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



