18.700 Problem Set 3

Due in class Tuesday October 10; late work will not be accepted. Your work on graded problem sets should written entirely on your own, although you may consult others before writing.

1. (3 points) Give an example of a 3×3 matrix A of real numbers whose reduced row-echelon form is

$$
\left(\begin{array}{ccc}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 3 \\
0 & 0 & 0
\end{array}\right)
$$

and such that every entry of A is a nonzero integer.
2. (3 points) The finite field \mathbb{F}_{9} contains $\mathbb{Z} / 3 \mathbb{Z}$ and an element I'll call x satisfying $x^{2}+1=0$. Using this fact, write down the 9×9 multiplication table for \mathbb{F}_{9}.
3. (6 points) Suppose p is any prime number. Imitating the complex numbers, you can define a set of p^{2} elements with addition and multiplication:

$$
\begin{aligned}
R_{p} & =\{a+b i \mid a, b \in \mathbb{Z} / p \mathbb{Z}\} \\
(a+b i)+(c+d i) & ={ }_{\operatorname{def}}(a+c)+(b+d) i \\
(a+b i)(c+d i) & =\operatorname{def}(a c-b d)+(a d+b c) i
\end{aligned}
$$

The associative, commutative, and distributive laws are all inherited by R_{p} from the Gaussian integers $m+n i$ (with m and n in \mathbb{Z}) and so are the additive and multiplicative identities and additive inverses. So R_{p} is a field if and only if it has multiplicative inverses.
a) For the prime numbers $p=2,3,5$, explain why R_{p} is or is not a field.
b) Prove that R_{53} is not a field. (Hint: $53=7^{2}+2^{2}$.)
c) Explain your best guess about whether R_{251} is a field. (For example, you might say, "we found that R_{p} was not a field for the odd primes 3,5 , and 53 , so probably R_{p} is not a field for any odd prime $p . "$)
4. (3 points) (Based on Axler, page 60, exercise 16). Suppose U is a finitedimensional vector spaces, that $S \in \mathcal{L}(V, W)$, and that $T \in \mathcal{L}(U, V)$. Prove that

$$
\operatorname{dim} \operatorname{null}(S T)=\operatorname{dim} \operatorname{null}(T)+\operatorname{dim}(\operatorname{range}(T) \cap \operatorname{null}(S)) .
$$

5. (3 points) Give an example of problem 4 with $U=V=W=\mathbb{R}^{2}$, with null (S) and null(T) both one-dimensional, but null $(S T)$ not 2-dimensional.
6. (3 points) Suppose $T \in \mathcal{L}(V, W)$, and that V is finite-dimensional.
a) Prove that $\operatorname{null}(T)=\{0\}$ if and only if for every linearly independent list $\left(v_{1}, v_{2}, \ldots, v_{p}\right)$ in $V,\left(T v_{1}, \ldots, T v_{p}\right)$ is linearly independent in W.
b) Prove that $\operatorname{range}(T)=W$ if and only if for every spanning list $\left(v_{1}, v_{2}, \ldots, v_{q}\right)$ in $V,\left(T v_{1}, \ldots, T v_{q}\right)$ is a spanning list in W.
c) Prove T is invertible if and only if T takes each basis of V to a basis of W.

MIT OpenCourseWare
http://ocw.mit.edu

18.700 Linear Algebra

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

