
18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 9
Scribe: Xuhong Zhang Oct. 7, 2015

Recall that last lecture we talked about convex relaxation of the original problem

n
1

ĥ = argmin 1I(h(Xi) = Yi)
h∈H n

∑

i=1

by considering soft classifiers (i.e. whose output is in [−1, 1] rather than in {0, 1}) and
convex surrogates of the loss function (e.g. hinge loss, exponential loss, logistic loss):

n
1ˆ ˆf = argminRϕ,n(f) = argmin ϕ(Yif(Xi))

f∈F f∈F n

∑

i=1

−

ˆ ˆAnd h = sign(f) will be used as the ‘hard’ classifier.

ˆ ¯ ¯We want to bound the quantity Rϕ(f)−Rϕ(f), where f = argminf∈F Rϕ(f).

ˆ ˆ(1) f = argminf∈F Rϕ,n(f), thus

ˆ ¯ ˆ ¯ ˆ ¯ ˆ ˆ ˆ ˆ ˆ ¯Rϕ(f) = Rϕ(f) +Rϕ,n(f)−Rϕ,n(f) +Rϕ,n(f)−Rϕ,n(f) +Rϕ(f)−Rϕ(f)

≤ ¯ ˆ ¯ ˆ ˆ ˆ ¯Rϕ(f) +Rϕ,n(f)−Rϕ,n(f) +Rϕ(f)−Rϕ(f)

≤ ¯ ˆRϕ(f) + 2 sup |Rϕ,n(f)−Rϕ(f)
f∈F

|

ˆ(2) Let us first focus on E[supf∈F |Rϕ,n(f)−Rϕ(f)|]. Using the symmetrization trick as
before, we know it is upper-bounded by 2Rn(ϕ◦F), where the Rademacher complexity

n
1Rn(ϕ ◦ F) = sup E[sup |
∑

σiϕ(−Yif(Xi))]
X1,...,Xn,Y1,...,Yn f∈F n

i=1

|

One thing to notice is that ϕ(0) = 1 for the loss functions we consider (hinge loss,
exponential loss and logistic loss), but in order to apply contraction inequality later,
we require ϕ(0) = 0. Let us define ψ(·) = ϕ(·) − 1. Clearly ψ(0) = 0, and

n
1

E[sup |
∑

(ϕ(−Yif(Xi))− E[ϕ(−Yif(Xi))])]
f∈F n

i=1

|

n
1

= E[sup |
∑

(ψ(−Yif(X) − Ei) [ψ(i

1

−Yif(X))])
f∈F n

i=

|]

≤ 2Rn(ψ ◦ F)

(3) The Rademacher complexity of ψ ◦ F is still difficult to deal with. Let us assume
that ϕ(·) is L-Lipschitz, (as a result, ψ(·) is also L-Lipschitz), apply the contraction
inequality, we have

Rn(ψ ◦ F) ≤ 2LRn(F)

1

6

(4) Let Zi = (Xi, Yi), i = 1, 2, ..., n and

n
1

g(Z1, Z2
ˆ, ..., Zn) = sup |Rϕ,n(f)−Rϕ(f) =

f

| sup
∈F f∈F

|
n

∑

(ϕ(
i=1

−Yif(Xi))−E[ϕ(−Yif(Xi))])|

Since ϕ(·) is monotonically increasing, it is not difficult to verify that ∀Z1, Z2, ..., Zn, Z
′
i

1 2L|g(Z1, ..., Zi, ..., Zn)− g(Z1, ..., Z
′
i, ..., Zn)| ≤ (ϕ(1) − ϕ(

n
−1)) ≤

n

The last inequality holds since g is L-Lipschitz. Apply Bounded Difference Inequality,

2t2
P(| s | ˆ ˆup Rϕ,n(f)−Rϕ(f)| − E[sup |Rϕ,n(f)−Rϕ(f)|] >

F ∈F
| t) ≤ 2 exp(

∈
−)

f
∑n

f i= (2L)2
1 n

Set the RHS of above equation to δ, we get:

log(2/δ)ˆ ˆsup R Eϕ,n(f) Rϕ(f) [sup Rϕ,n(f)
f∈F

| − | ≤
f∈F

| −Rϕ(f)|] + 2L

√

2n

with probability 1− δ.

(5) Combining (1) - (4), we have

ˆ ¯Rϕ(f) ≤ Rϕ(f) + 8LRn(F) + 2L

√

log(2/δ)

2n

with probability 1− δ.

1.4 Boosting

In this section, we will specialize the above analysis to a particular learning model: Boosting.
The basic idea of Boosting is to convert a set of weak learners (i.e. classifiers that do better
than random, but have high error probability) into a strong one by using the weighted
average of weak learners’ opinions. More precisely, we consider the following function class

M

F = {
∑

θjhj(·) : |θ|1 ≤ 1, hj : X 7→ [−1, 1], j ∈ {1, 2, ...,M a
j=1

} re classifiers}

and we want to upper bound Rn(F) for this choice of F .

n M n
1 1Rn(F) = sup E[sup σiYif(Xi)] = sup E[sup θj Yiσihj(Xi)]

Z1,...,Zn f∈F
|
n

∑

n Z |θ|1≤11

|
1,...,Zi= n

|
∑

j=1

∑

i=1

|

Let g(θ) = |∑M
j=1

θj
∑n

i=1
Yiσihj(Xi)|. It is easy to see that g(θ) is a convex function, thus

sup|θ|1≤1 g(θ) is achieved at a vertex of the unit ℓ1 ball {θ : ‖θ‖1 ≤ 1}. Define the finite set

Y1h1(X1)

Y1h2(X1)

Y1hM (X1)
{

Y2h1(X2) Y2h2(X2) Y2hM (X2)
BX,Y ,

. , , . . . ,

.

±

.
± ±

}

Ynh1(Xn)

. ..

Ynh2(Xn)

.. .
YnhM (Xn)

2

Then
Rn(F) = supRn(BX,Y) .

X,Y

Notice maxb∈BX,Y
b

√| |2 ≤ n and |BX,Y| = 2M . Therefore, using a lemma from Lecture 5,
we get

2 log(2 B 2 4R X,Y) log(M)
n(BX,Y) ≤ max

b∈BX,Y

|b|2
√

| |
n

≤
√

n

Thus for Boosting,

[]

2 log(4M) log(2/δ)ˆ ¯Rϕ(f) ≤ Rϕ(f) + 8L

√

+ 2L

√

with probability 1 - δ
n 2n

To get some ideas of what values L usually takes, consider the following examples:

(1) for hinge loss, i.e. ϕ(x) = (1 + x)+, L = 1.

(2) for exponential loss, i.e. ϕ(x) = ex, L = e.

(3) for logistic loss, i.e. ϕ(x) = log2(1 + ex), L = e
1+e

log2(e) ≈ 2.43

ˆ ¯Now we have bounded Rϕ(f) − Rϕ(f), but this is not yet the excess risk. Excess risk is
ˆdefined as R(f) − R(f∗), where f∗ = argminf Rϕ(f). The following theorem provides a

bound for excess risk for Boosting.

Theorem: Let F = {∑M
j=1

θjhj : ‖θ‖1 ≤ 1, hjs are weak classifiers} and ϕ is an L-
ˆ ˆ ˆLipschitz convex surrogate. Define f = argminf∈F Rϕ,n(f) and h = sign(f). Then

γ γ

∗
(

∗
)γ

(

2 log(4M) log(2/δ)ˆR(h)−R ≤ 2c inf Rϕ(f)−Rϕ(f) +2c 8L +
f∈F

√

n

)

2c

(

2L

√

2n

)

with probability 1− δ

Proof.

ˆR(h)−R∗ ≤ 2c
(γ
Rϕ(f)−Rϕ(f

∗)
)

(γ

∗ 2 log(4M) log(2/δ)≤ 2c inf Rϕ(f) Rϕ(f) + 8L + 2L
f∈F

−
√

n

√

2n

)

γ

∗ γ 2 log(4M) log(2/δ)≤ 2c inf Rϕ(f)−Rϕ(f) + 2c
f∈F

(

8L

√

n

)

+ 2c

(

2L

√

2n

)γ
()

Here the first inequality uses Zhang’s lemma and the last one uses the fact that for ai ≥ 0
and γ ∈ [0, 1], (a1 + a γ

2 + a3) ≤ aγ1 + aγ2 + aγ3 .

1.5 Support Vector Machines

In this section, we will apply our analysis to another important learning model: Support
Vector Machines (SVMs). We will see that hinge loss ϕ(x) = (1 + x)+ is used and the
associated function class is F = {f : ‖f‖W ≤ λ} where W is a Hilbert space. Before
analyzing SVMs, let us first introduce Reproducing Kernel Hilbert Spaces (RKHS).

3

1.5.1 Reproducing Kernel Hilbert Spaces (RKHS)

Definition: A function K : X × X 7→ IR is called a positive symmetric definite kernel

(PSD kernel) if

(1) ∀x, x′ ∈ X , K(x, x′) = K(x′, x)

(2) ∀n ∈ Z+, ∀x1, x2, ..., xn, the n
th

× n matrix with K(xi, xj) as its element in ith row
and j column is positive semi-definite. In other words, for any a1, a2, ..., an ∈ IR,

∑

aiajK(xi, xj) 0
i,j

≥

Let us look at a few examples of PSD kernels.

Example 1 Let X = IR, K(x, x′) = 〈x, x′〉IRd is a PSD kernel, since ∀a1, a2, ..., an ∈ IR
∑

aiaj〈xi, xj〉IRd =
∑

〈aixi, ajxj〉IRd = 〈
∑

aixi,
∑

ajxj〉IRd = ‖
∑

a 2
ixi‖IRd 0

i,j i,j i j i

≥

Example 2 The Gaussian kernel K(x, x′) = exp(− 1 2

2
‖ ′

2 x− x ‖
IRd) is also a PSD kernel.

σ

Note that here and in the sequel, ‖ · ‖W and 〈·, ·〉W denote the norm and inner product
of Hilbert space W .

Definition: LetW be a Hilbert space of functions X 7→ IR. A symmetric kernel K(·, ·)
is called reproducing kernel of W if

(1) ∀x ∈ X , the function K(x, ·) ∈W .

(2) ∀x ∈ X , f ∈W , 〈f(·),K(x, ·)〉W = f(x).

If such a K(x, ·) exists, W is called a reproducing kernel Hilbert space (RKHS).

Claim: If K(·, ·) is a reproducing kernel for some Hilbert space W , then K(·, ·) is a
PSD kernel.

Proof. ∀a1, a2, ..., an ∈ IR, we have
∑

aiajK(xi, xj) =
∑

aiaj〈K(xi, ·),K(xj , ·)〉 (since K(,) is reproducing)
i,j i,j

· ·

= 〈
∑

aiK(xi,), ajK(xj ,) W

i

·
∑

j

· 〉

= ‖
∑

aiK(xi,
i

·)‖2W ≥ 0

4

In fact, the above claim holds both directions, i.e. if a kernel K(·, ·) is PSD, it is also a
reproducing kernel.

A natural question to ask is, given a PSD kernel K(·, ·), how can we build the corresponding
Hilbert space (for which K(·, ·) is a reproducing kernel)? Let us look at a few examples.

Example 3 Let ϕ1, ϕ2, ..., ϕM be a set of orthonormal functions in L2([0, 1]), i.e. for any
j, k ∈ {1, 2, ...,M}

∫

ϕj(x)ϕk(x)dx =
x

〈ϕj , ϕk〉 = δjk

Let K(x, x′) =
∑M

j=1
ϕj(x)ϕj(x

′). We claim that the Hilbert space

M

W = {
∑

ajϕj(:
=1

·) a1, a2, ..., aM
j

∈ IR}

equipped with inner product 〈·, ·〉L2
is a RKHS with reproducing kernel K(·, ·).

M
Proof. (1) K(x, ·) = j=1

ϕj(x)ϕj(·) ∈W . (Choose aj = ϕj(x)).

(2) If f(·) =∑M
j=1

aj

∑

ϕj(·),

M M M

〈f(·),K(x, ·)〉L2
= 〈
∑

ajϕj(·),
∑

ϕk(x)ϕk(·)〉L2
=
∑

ajϕj(x) = f(x)
j=1 k=1 j=1

(3) K(x, x′) is a PSD kernel: ∀a1, a2, ..., an ∈ IR,

∑

aiajK(x 2
i, xj) =

∑

aiajϕk(xi)ϕk(xj) =
∑

(
∑

aiϕk(xi))
i,j i,j,k k i

≥ 0

Example 4 If X = IRd, and K(x, x′) = 〈x, x′〉IRd , the corresponding Hilbert space is
W = {〈w, ·〉 : w ∈ IRd} (i.e. all linear functions) equipped with the following inner product:
if f = 〈w, ·〉, g = 〈v, ·〉, 〈f, g〉 , 〈w, v〉IRd .

Proof. (1) ∀x ∈ IRd, K(x, ·) = 〈x, ·〉IRd ∈W .

(2) ∀f = 〈w, ·〉IRd ∈W , ∀x ∈ IRd, 〈f,K(x, ·)〉 = 〈w, x〉IRd = f(x)

(3) K(x, x′) is a PSD kernel: ∀a1, a2, ..., an ∈ IR,

∑

aiajK(xi, xj) =
∑

aiaj ,
,j i,j

〈xi xj
i

〉 = 〈
∑

aixi,
i

∑

ajxj
j

〉IRd = ‖
∑

aix
2

i IRd 0
i

‖ ≥

5

MIT OpenCourseWare
http://ocw.mit.edu

18.657 Mathematics of Machine Learning
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

