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Part II

Convexity

1. CONVEX RELAXATION OF THE EMPIRICAL RISK MINIMIZATION

ˆIn the previous lectures, we have proved upper bounds on the excess risk R(herm)−R(h∗)
of the Empirical Risk Minimizer

ĥerm
1

= argmin
h∈H

n

1I(Yi = h(Xi)). (1.1)
n

∑

i=1

6

However due to the nonconvexity of the objective function, the optimization problem
(1.1) in general can not be solved efficiently. For some choices of H and the classification
error function (e.g. 1I(·)), the optimization problem can be NP-hard. However, the problem
we deal with has some special features:

1. Since the upper bound we obtained on the excess risk is O(
√

d logn), we only need to
n

approximate the optimization problem with error up to O(
√

d logn
n

).

2. The optimization problem corresponds to the average case problem where the data
i.i.d

(Xi, Yi) ∼ PX,Y .

3. H can be chosen to be some ’natural’ classifiers, e.g. H = {half spaces}.

These special features might help us bypass the computational issue. Computational
issue in machine learning have been studied for quite some time (see, e.g. [Kea90]), especially
in the context of PAC learning. However, many of these problems are somewhat abstract
and do not shed much light on the practical performance of machine learning algorithms.

To avoid the computational problem, the basic idea is to minimize a convex upper bound
of the classification error function 1I(·) in (1.1). For the purpose of computation, we shall
also require that the function class H be a convex set. Hence the resulting minimization
becomes a convex optimization problem which can be solved efficiently.

1.1 Convexity

Definition: A set C is convex if for all x, y ∈ C and λ ∈ [0, 1], λx+ (1− λ)y ∈ C.
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Definition: A function f : D → IR on a convex domain D is convex if it satisfies

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ D, and λ ∈ [0, 1].

1.2 Convex relaxation

The convex relaxation takes three steps.

Step 1: Spinning.
Using a mapping Y 7→ 2Y −1, the i.i.d. data (X1, Y1), (X2, Y2), . . . , (Xn, Yn) is transformed
to lie in X ×{−1, 1}. These new labels are called spinned labels. Correspondingly, the task
becomes to find a classifier h : X 7→ {−1, 1}. By the relation

h(X) 6= Y ⇔ −h(X)Y > 0,

we can rewrite the objective function in (1.1) by

n n
1 ∑ 1

1I(h(Xi) = Yi) =
∑

ϕ1I( h
n n

i=1 i=1

− (Xi)Yi) (1.2)

where ϕ1I(z) = 1I(z > 0).

Step 2: Soft classifiers.
The set H of classifiers in (1.1) contains only functions taking values in {−1, 1}. As a result,
it is non convex if it contains at least two distinct classifiers. Soft classifiers provide a way
to remedy this nuisance.

Definition: A soft classifier is any measurable function f : X → [−1, 1]. The hard

classifier (or simply “classifier”) associated to a soft classifier f is given by h = sign(f).

Let F ⊂ IRX be a convex set soft classifiers. Several popular choices for F are:

• Linear functions:
F := {〈a, x〉 : a ∈ A}.

for some convex set A ∈ IRd. The associated hard classifier h = sign(f) splits IRd into
two half spaces.

• Majority votes: given weak classifiers h1, . . . , hM ,

M M

F :=
{

∑

λjhj(x) : λj

j=

≥ 0,
∑

λj = 1
}

.
1 j=1

• Let ϕj , j = 1, 2, . . . a family of functions, e.g., Fourier basis or Wavelet basis. Define

∞

F := {
∑

θjϕj(x) : (θ1, θ2, . . .)
j=1

∈ Θ},

where Θ is some convex set.
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Step 3: Convex surrogate.
Given a convex set F of soft classifiers, using the rewriting in (1.2), we need to solve that
minimizes the empirical classification error

1
min
f∈F

n

ϕ1I( f(Xi)Yi),
n

∑

i=1

−

However, while we are now working with a convex constraint, our objective is still not
convex: we need a surrogate for the classification error.

Definition: A function ϕ : IR 7→ IR+ is called a convex surrogate if it is a convex
non-decreasing function such that ϕ(0) = 1 and ϕ(z) ≥ ϕ1I(z) for all z ∈ IR.

The following is a list of convex surrogates of loss functions.

• Hinge loss: ϕ(z) = max(1 + z, 0).

• Exponential loss: ϕ(z) = exp(z).

• Logistic loss: ϕ(z) = log2(1 + exp(z)).

To bypass the nonconvexity of ϕ1I(·), we may use a convex surrogate ϕ(·) in place of
ˆϕ1I(·) and consider the minimizing the empirical ϕ-risk Rn,ϕ defined by

1
R̂n,ϕ(f) =

n

n
∑

i=1

ϕ(−Yif(Xi))

It is the empirical counterpart of the ϕ-risk Rϕ defined by

Rϕ(f) = IE[ϕ(−Y f(X))].

1.3 ϕ-risk minimization

In this section, we will derive the relation between the ϕ-risk Rϕ(f) of a soft classifier f and
the classification error R(h) = IP(h(X) = Y ) of its associated hard classifier h = sign(f)

Let
f∗
ϕ = argminE[ϕ( Y

f∈IRX

− f(X))]

where the infimum is taken over all measurable functions f : X → IR.
To verify that minimizing the ϕ serves our purpose, we will first show that if the convex

surrogate ϕ(·) is differentiable, then sign(f∗
ϕ(X)) ≥ 0 is equivalent to η(X) ≥ 1/2 where

η(X) = IP(Y = 1 | X). Conditional on {X = x}, we have

IE[ϕ(−Y f(X)) | X = x] = η(x)ϕ(−f(x)) + (1− η(x))ϕ(f(x)).

Let

Hη(α) = η(x)ϕ(−α) + (1− η(x))ϕ(α) (1.3)
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so that

f∗
ϕ(x) = argminH ∗

η(α) , and Rϕ = min Rϕ(f) = minHη )
α f∈IRX

(x)(α .
α∈IR∈IR

Since ϕ(·) is differentiable, setting the derivative of H ∗
η(α) to zero gives fϕ(x) = ᾱ, where

H ′
η(ᾱ) = −η(x)ϕ′(−ᾱ) + (1− η(x))ϕ′(ᾱ) = 0,

which gives
η(x) ϕ′(ᾱ)

=
1− η(x) ϕ′(−ᾱ)

Since ϕ(·) is a convex function, its derivative ϕ′(·) is non-decreasing. Then from the equation
above, we have the following equivalence relation

1
η(x) ≥ ⇔ ᾱ ≥ 0 ⇔ sign(f∗

2 ϕ(x)) ≥ 0. (1.4)

Since the equivalence relation holds for all x ∈ X ,

1
η(X) ≥ ⇔ sign(f∗

ϕ(X))
2

≥ 0.

The following lemma shows that if the excess ϕ-risk R (f)−R∗
ϕ ϕ of a soft classifier f is

small, then the excess-risk of its associated hard classifier sign(f) is also small.

Lemma (Zhang’s Lemma [Zha04]): Let ϕ : IR 7→ IR+ be a convex non-decreasing
function such that ϕ(0) = 1. Define for any η ∈ [0, 1],

τ(η) := inf Hη(α).
α∈IR

If there exists c > 0 and γ ∈ [0, 1] such that

1|η − c
2
| ≤ (1 − τ(η))γ , ∀η ∈ [0, 1] , (1.5)

then
R(sign(f))−R∗ ≤ 2c(Rϕ(f)−R∗

ϕ)
γ

Proof. Note first that τ(η) ≤ Hη(0) = ϕ(0) = 1 so that condition (2.5) is well defined.
Next, let h∗ = argminh∈{−1,1}X IP[h(X) = Y ] = sign(η−1/2) denote the Bayes classifier,

where η = IP[Y = 1|X = x], . Then it is easy to verify that

R(sign(f))−R∗ = IE[|2η(X) − 1|1I(sign(f(X)) = h∗(X))]

= IE[|2η(X) − 1|1I(f(X)(η(X) − 1/2) < 0)]

≤ 2cIE[((1− τ(η(X)))1I(f(X)(η(X) − 1/2) < 0))γ ]

≤ 2c (IE[(1− τ(η(X)))1I(f(X)(η(X) − 1/2) < 0)])γ ,

where the last inequality above follows from Jensen’s inequality.
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We are going to show that for any x ∈ X , it holds

(1− τ(η))1I(f(x)(η(x) − 1/2) < 0)] ≤ IE[ϕ(−Y f(x)) | X = x]−R∗
ϕ . (1.6)

This will clearly imply the result by integrating with respect to x.
Recall first that

IE[ϕ(−Y f(x)) | X = x] = Hη(x)(f(x)) and R∗
ϕ = minHη(x)(α) = τ(η(x)) .

α∈IR

so that (2.6) is equivalent to

(1− τ(η))1I(f(x)(η(x) − 1/2) < 0)] ≤ Hη(x)(α) − τ(η(x))

Since the right-hand side above is nonnegative, the case where f(x)(η(x)− 1/2) ≥ 0 follows
trivially. If f(x)(η(x)−1/2) < 0, (2.6) follows if we prove that Hη(x)(α) ≥ 1. The convexity
of ϕ(·) gives

Hη(x)(α) = η(x)ϕ(−f(x)) + (1− η(x))ϕ(f(x))

≥ ϕ(−η(x)f(x) + (1− η(x))f(x))

= ϕ((1− 2η(x))f(x))

≥ ϕ(0) = 1 ,

where the last inequality follows from the fact that ϕ is non decreasing and f(x)(η(x) −
1/2) < 0. This completes the proof of (2.6) and thus of the Lemma.

IT is not hard to check the following values for the quantities τ(η), c and γ for the three
losses introduced above:

• Hinge loss: τ(η) = 1− |1− 2η| with c = 1/2 and γ = 1.

• Exponential loss: τ(η) = 2
√

η(1− η) with c = 1/
√
2 and γ = 1/2.

• Logistic loss: τ(η) = −η log η − (1− η) log(1− η) with c = 1/
√
2 and γ = 1/2.
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