18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet
Lecture 7
Scribe: ZACH IZZO
Sep. 30, 2015

In this lecture, we continue our discussion of covering numbers and compute upper bounds for specific conditional Rademacher averages $\hat{\mathcal{R}}_{n}^{x}(\mathcal{F})$. We then discuss chaining and conclude by applying it to learning.

Recall the following definitions. We define the risk function

$$
R(f)=\mathbb{E}[\ell(X, f(X))], \quad(X, Y) \in \mathcal{X} \times[-1,1]
$$

for some loss function $\ell(\cdot, \cdot)$. The conditiona Rademacher average that we need to control is

$$
\mathcal{R}(\ell l \circ \mathcal{F})=\sup _{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)} \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \ell\left(y_{i}, f\left(x_{i}\right)\right)\right|\right] .
$$

Furthermore, we defined the conditional Rademacher average for a point $x=\left(x_{1}, \ldots, x_{n}\right)$ to be

$$
\hat{\mathcal{R}}_{n}^{x}(\mathcal{F})=\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(x_{i}\right)\right|\right] .
$$

Lastly, we define the ε-covering number $N(\mathcal{F}, d, \varepsilon)$ to be the minimum number of balls (with respect to the metric d) of radius ε needed to cover \mathcal{F}. We proved the following theorem:

Theorem: Assume $|f| \leq 1$ for all $f \in \mathcal{F}$. Then

$$
\hat{\mathcal{R}}_{n}^{x}(\mathcal{F}) \leq \inf _{\varepsilon>0}\left\{\varepsilon+\sqrt{\frac{2 \log \left(2 N\left(\mathcal{F}, d_{1}^{x}, \varepsilon\right)\right)}{n}}\right\}
$$

where d_{1}^{x} is given by

$$
d_{1}^{x}(f, g)=\frac{1}{n} \sum_{i=1}^{n}\left|f\left(x_{i}\right)-g\left(x_{i}\right)\right|
$$

We make use of this theorem in the following example. Define $B_{p}^{d}=\left\{x \in \mathbb{R}^{d}:|x|_{p} \leq 1\right\}$. Then take $f(x)=\langle a, x\rangle$, set $\mathcal{F}=\left\{\langle a, \cdot\rangle: a \in B_{\infty}^{d}\right\}$, and $\mathcal{X}=B_{1}^{d}$. By Hölder's inequality, we have

$$
|f(x)| \leq|a|_{\infty}|x|_{1} \leq 1
$$

so the theorem above holds. We need to compute the covering number $N\left(\mathcal{F}, d_{1}^{x}, \varepsilon\right)$. Note that for all $a \in B_{\infty}^{d}$, there exists $v=\left(v_{1}, \ldots, v_{n}\right)$ such that $v_{i}=g\left(x_{i}\right)$ and

$$
\frac{1}{n} \sum_{i=1}^{n}\left|\left\langle a, x_{i}\right\rangle-v_{i}\right| \leq \varepsilon
$$

for some function g. For this case, we will take $g(x)=\langle b, x\rangle$, so $v_{i}=\left\langle b, x_{i}\right\rangle$. Now, note the following. Given this definition of g, we have

$$
d_{1}^{x}(f, g)=\frac{1}{n} \sum_{i=1}^{n}\left|\left\langle a, x_{1}\right\rangle-\left\langle b, x_{i}\right\rangle\right|=\frac{1}{n} \sum_{i=1}^{n}\left|\left\langle a-b, x_{i}\right\rangle\right| \leq|a-b|_{\infty}
$$

by Hölder's inequality and the fact that $|x|_{1}=1$. So if $|a-b|_{\infty} \leq \varepsilon$, we can take $v_{i}=\left\langle b, x_{i}\right\rangle$. We just need to find a set of $\left\{b_{1}, \ldots, b_{M}\right\} \subset \mathbb{R}^{d}$ such that, for any a there exists b_{j} such that $\left|a-b_{j}\right|_{\infty}<\infty$. We can do this by dividing B_{∞}^{d} into cubes with side length ε and taking the b_{j} 's to be the set of vertices of these cubes. Then any $a \in B_{\infty}^{d}$ must land in one of these cubes, so $\left|a-b_{j}\right|_{\infty} \leq \varepsilon$ as desired. There are c / ε^{d} of such b_{j} 's for some constant $c>0$. Thus

$$
N\left(B_{\infty}^{d}, d_{1}^{x}, \varepsilon\right) \leq c / \varepsilon^{d} .
$$

We now plug this value into the theorem to obtain

$$
\hat{\mathcal{R}}_{n}^{x}(\mathcal{F}) \leq \inf _{\varepsilon \geq 0}\left\{\varepsilon+\sqrt{\frac{2 \log \left(c / \varepsilon^{d}\right)}{n}}\right\} .
$$

Optimizing over all choices of ε gives

$$
\varepsilon^{*}=c \sqrt{\frac{d \log (n)}{n}} \quad \Rightarrow \quad \hat{\mathcal{R}}_{n}^{x}(\mathcal{F}) \leq c \sqrt{\frac{d \log (n)}{n}}
$$

Note that in this final inequality, the conditional empirical risk no longer depends on x, since we "sup'd" x out of the bound during our computations. In general, one should ignore x unless it has properties which will guarantee a bound which is better than the sup. Another important thing to note is that we are only considering one granularity of \mathcal{F} in our final result, namely the one associated to ε^{*}. It is for this reason that we pick up an extra \log factor in our risk bound. In order to remove this term, we will need to use a technique called chaining.

5.4 Chaining

We have the following theorem.

Theorem: Assume that $|f| \leq 1$ for all $f \in \mathcal{F}$. Then

$$
\hat{\mathcal{R}}_{n}^{x} \leq \inf _{\varepsilon>0}\left\{4 \varepsilon+\frac{12}{\sqrt{n}} \int_{\varepsilon}^{1} \sqrt{\log \left(N\left(\mathcal{F}, d_{2}^{x}, t\right)\right)} d t\right\} .
$$

(Note that the integrand decays with t.)

Proof. Fix $x=\left(x_{1}, \ldots, x_{n}\right)$, and for all $j=1, \ldots, N$, let V_{j} be a minimal 2^{-j}-net of \mathcal{F} under the d_{2}^{x} metric. (The number N will be determined later.) For a fixed $f \in \mathcal{F}$, this process will give us a "chain" of points f_{i}° which converges to $f: d_{2}^{x}\left(f_{i}^{\circ}, f\right) \leq 2^{-j}$.

Define $F=\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)^{\top}, f \in \mathcal{F}\right\} \subset[-1,1]^{n}$. Note that

$$
\hat{\mathcal{R}}_{n}^{x}(\mathcal{F})=\frac{1}{n} \mathbb{E} \sup _{f \in F}\langle\sigma, f\rangle
$$

where $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. Observe that for all N, we can rewrite $\langle\sigma, f\rangle$ as a telescoping sum:

$$
\langle\sigma, f\rangle=\left\langle\sigma, f-f_{N}^{\circ}\right\rangle+\left\langle\sigma, f_{N}^{\circ}-f_{N-1}^{\circ}\right\rangle+\ldots+\left\langle\sigma, f_{1}^{\circ}-f_{0}^{\circ}\right\rangle
$$

where $f_{0}^{\circ}:=0$. Thus

$$
\hat{\mathcal{R}}_{n}^{x}(\mathcal{F}) \leq \frac{1}{n} \mathbb{E} \sup _{f \in F}\left|\left\langle\sigma, f-f_{N}^{\circ}\right\rangle\right|+\sum_{j=1}^{N} \frac{1}{n} \mathbb{E} \sup _{f \in F}\left|\left\langle\sigma, f_{j}^{\circ}-f_{j-1}^{\circ}\right\rangle\right| .
$$

We can control the two terms in this inequality separately. Note first that by the CauchySchwarz inequality,

$$
\frac{1}{n} \mathbb{E} \sup _{f \in F}\left|\left\langle\sigma, f-f_{N}^{\circ}\right\rangle\right| \leq|\sigma|_{2} \frac{d_{2}^{x}\left(f, f_{N}^{\circ}\right)}{\sqrt{n}} .
$$

Since $|\sigma|_{2}=\sqrt{n}$ and $d_{2}^{x}\left(f, f_{N}^{\circ}\right) \leq 2^{-N}$, we have

$$
\frac{1}{n} \mathbb{E} \sup _{f \in F}\left|\left\langle\sigma, f-f_{N}^{\circ}\right\rangle\right| \leq 2^{-N} .
$$

Now we turn our attention to the second term in the inequality, that is

$$
S=\sum_{j=1}^{N} \frac{1}{n} \mathbb{E} \sup _{f \in F}\left|\left\langle\sigma, f_{j}^{\circ}-f_{j-1}^{\circ}\right\rangle\right| .
$$

Note that since $f_{j}^{\circ} \in V_{j}$ and $f_{j-1}^{\circ} \in V_{j-1}$, there are at most $\left|V_{j}\right|\left|V_{j-1}\right|$ possible differences $f_{j}^{\circ}-f_{j-1}^{\circ}$. Since $\left|V_{j-1}\right| \leq\left|V_{j}\right| / 2,\left|V_{j}\right|\left|V_{j-1}\right| \leq\left|V_{j}\right|^{2} / 2$ and we find ourselves in the finite dictionary case. We employ a risk bound from earlier in the course to obtain the inequality

$$
\mathcal{R}_{n}(B) \leq \max _{b \in B}|b|_{2} \frac{\sqrt{2 \log (2|B|)}}{n}
$$

In the present case, $B=\left\{f_{j}^{\circ}-f_{j-1}^{\circ}, f \in F\right\}$ so that $|B| \leq\left|V_{j}\right|^{2} / 2$. It yields

$$
\mathcal{R}_{n}(B) \leq r \cdot \frac{\sqrt{2 \log \left(\frac{2\left|V_{j}\right|^{2}}{2}\right)}}{n}=2 r \cdot \frac{\sqrt{\log \left|V_{j}\right|}}{n},
$$

where $r=\sup _{f \in F}\left|f_{j}^{\circ}-f_{j-1}^{\circ}\right|_{2}$. Next, observe that

$$
\left|f_{j}^{\circ}-f_{j-1}^{\circ}\right|_{2}=\sqrt{n} \cdot d_{2}^{x}\left(f_{j}^{\circ}, f_{j-1}^{\circ}\right) \leq \sqrt{n}\left(d_{2}^{x}\left(f_{j}^{\circ}, f\right)+d_{2}^{x}\left(f, f_{j-1}^{\circ}\right)\right) \leq 3 \cdot 2^{-j} \sqrt{n}
$$

by the triangle inequality and the fact that $d_{2}^{x}\left(f_{j}^{\circ}, f\right) \leq 2^{-j}$. Substituting this back into our bound for $\mathcal{R}_{n}(B)$, we have

$$
\mathcal{R}_{n}(B) \leq 6 \cdot 2^{-j} \sqrt{\frac{\log \left|V_{j}\right| \mid}{n}}=6 \cdot 2^{-j} \sqrt{\frac{\log \left(N\left(\mathcal{F}, d_{2}^{x}, 2^{-j}\right)\right)}{n}}
$$

since V_{j} was chosen to be a minimal 2^{-j}-net.
The proof is almost complete. Note that $2^{-j}=2\left(2^{-j}-2^{-j-1}\right)$ so that

$$
\frac{6}{\sqrt{n}} \sum_{j=1}^{N} 2^{-j} \sqrt{\log \left(N\left(\mathcal{F}, d_{2}^{x}, 2^{-j}\right)\right)}=\frac{12}{\sqrt{n}} \sum_{j=1}^{N}\left(2^{-j}-2^{-j-1}\right) \sqrt{\log \left(N\left(\mathcal{F}, d_{2}^{x}, 2^{-j}\right)\right)}
$$

Next, by comparing sums and integrals (Figure 1), we see that

$$
\sum_{j=1}^{N}\left(2^{-j}-2^{-j-1}\right) \sqrt{\log \left(N\left(\mathcal{F}, d_{2}^{x}, 2^{-j}\right)\right)} \leq \int_{2^{-(N+1)}}^{1 / 2} \sqrt{\log \left(N\left(\mathcal{F}, d_{2}^{x}, t\right)\right)} d t
$$

Figure 1: A comparison of the sum and integral in question.

So we choose N such that $2^{-(N+2)} \leq \varepsilon \leq 2^{-(N+1)}$, and by combining our bounds we obtain

$$
\hat{\mathcal{R}}_{n}^{x}(\mathcal{F}) \leq 2^{-N}+\frac{12}{\sqrt{n}} \int_{2^{-(N+1)}}^{1 / 2} \sqrt{\log \left(N\left(\mathcal{F}, d_{2}^{x}, t\right)\right)} d t \leq 4 \varepsilon+\int_{\varepsilon}^{1} \sqrt{\log (N, \mathcal{F}, t)} d t
$$

since the integrand is non-negative. (Note: this integral is known as the "Dudley Entropy Integral.")

Returning to our earlier example, since $N\left(\mathcal{F}, d_{2}^{x}, \varepsilon\right) \leq c / \varepsilon^{d}$, we have

$$
\hat{\mathcal{R}}_{n}^{x}(\mathcal{F}) \leq \inf _{\varepsilon>0}\left\{4 \varepsilon+\frac{12}{\sqrt{n}} \int_{\varepsilon}^{1} \sqrt{\log \left(\left(c^{\prime} / t\right)^{d}\right)} d t\right\}
$$

Since $\int_{0}^{1} \sqrt{\log (c / t)} d t=\bar{c}$ is finite, we then have

$$
\hat{\mathcal{R}}_{n}^{x}(\mathcal{F}) \leq 12 \bar{c} \sqrt{d / n}
$$

Using chaining, we've been able to remove the log factor!

5.5 Back to Learning

We want to bound

$$
\mathcal{R}_{n}(\ell \circ \mathcal{F})=\sup _{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)} \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \ell\left(y_{i}, f\left(x_{i}\right)\right)\right|\right] .
$$

We consider $\hat{\mathcal{R}}_{n}^{x}(\Phi \circ \mathcal{F})=\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \Phi \circ f\left(x_{i}\right)\right|\right]$ for some L-Lipschitz function Φ, that is $|\Phi(a)-\Phi(b)| \leq L|a-b|$ for all $a, b \in[-1,1]$. We have the following lemma.

Theorem: (Contraction Inequality) Let Φ be L-Lipschitz and such that $\Phi(0)=0$, then

$$
\hat{\mathcal{R}}_{n}^{x}(\Phi \circ \mathcal{F}) \leq 2 L \cdot \hat{\mathcal{R}}_{n}^{x}(\mathcal{F})
$$

The proof is omitted and the interested reader should take a look at [LT91, Kol11] for example.

As a final remark, note that requiring the loss function to be Lipschitz prohibits the use of \mathbb{R}-valued loss functions, for example $\ell(Y, \cdot)=(Y-\cdot)^{2}$.

References

[Kol11] Vladimir Koltchinskii. Oracle inequalities in empirical risk minimization and sparse recovery problems. École d'Été de Probabilités de Saint-Flour XXXVIII-2008. Lecture Notes in Mathematics 2033. Berlin: Springer. ix, 254 p. EUR 48.10, 2011.
[LT91] Michel Ledoux and Michel Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991. Isoperimetry and processes.

MIT OpenCourseWare
http://ocw.mit.edu

18.657 Mathematics of Machine Learning

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

