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5. LEARNING WITH A GENERAL LOSS FUNCTION

In the previous lectures we have focused on binary losses for the classification problem and
developed VC theory for it. In particular, the risk for a classification function h : X → {0, 1}
and binary loss function the risk was

R(h) = IP(h(X) = Y ) = IE[1I(h(X) = Y )].

In this lecture we will consider a general loss function and a general regression model where
Y is not necessarily a binary variable. For the binary classification problem, we then used
the followings:

• Hoeffding’s inequality: it requires boundedness of the loss functions.

• Bounded difference inequality: again it requires boundedness of the loss functions.

• VC theory: it requires binary nature of the loss function.

Limitations of the VC theory:

• Hard to find the optimal classification: the empirical risk minimization optimization,
i.e.,

n
1

min
h n

∑

1I(h(Xi) = Yi)
i=1

is a difficult optimization. Even though it is a hard optimization, there are some
algorithms that try to optimize this function such as Perceptron and Adaboost.

• This is not suited for regression. We indeed know that classification problem is a
subset of Regression problem as in regression the goal is to find IE[Y |X] for a general
Y (not necessarily binary).

In this section, we assume that Y ∈ [−1, 1] (this is not a limiting assumption as all the
results can be derived for any bounded Y ) and we have a regression problem where (X,Y ) ∈
X × [−1, 1]. Most of the results that we preset here are the analogous to the results we had
in binary classification. This would be a good place to review those materials and we will
refer to the techniques we have used in classification when needed.

5.1 Empirical Risk Minimization

5.1.1 Notations

Loss function: In binary classification the loss function was 1I(h(X) = Y ). Here, we
replace this loss function by ℓ(Y, f(X)) which we assume is symmetric, where f ∈ F ,
f : X → [−1, 1] is the regression functions. Examples of loss function include
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• ℓ(a, b) = 1I(a = b) ( this is the classification loss function).

• ℓ(a, b) = |a− b|.

• ℓ(a, b) = (a− b)2.

• ℓ(a, b) = |a− b|p, p ≥ 1.

We further assume that 0 ≤ ℓ(a, b) ≤ 1.
Risk: risk is the expectation of the loss function, i.e.,

R(f) = IEX,Y [ℓ(Y, f(X))],

where the joint distribution is typically unknown and it must be learned from data.
Data: we observe a sequence (X1, Y1), . . . , (Xn, Yn) of n independent draws from a joint
distribution PX,Y , where (X,Y ) ∈ X × [−1, 1]. We denote the data points by Dn =
{(X1, Y1), . . . , (Xn, Yn)}.
Empirical Risk: the empirical risk is defined as

n
1

R̂n(f) =
n

∑

ℓ(Yi, f(Xi)),
i=1

ˆ ˆand the empirical risk minimizer denoted by f erm (or f) is defined as the minimizer of
empirical risk, i.e.,

ˆargminRn(f).
f∈F

ˆIn order to control the risk of f we shall compare its performance with the following oracle:

f̄ ∈ argminR(f).
f∈F

Note that this is an oracle as in order to find it one need to have access to PXY and then
ˆoptimize R(f) (we only observe the data Dn). Since f is the minimizer of the empirical

ˆ ˆ ˆ ¯risk minimizer, we have that Rn(f) ≤ Rn(f), which leads to

ˆR(f) ≤ ˆR(f)− ˆ ˆ ˆ ˆ ˆ ¯ ˆ ¯ ¯ ¯Rn(f) +Rn(f)−Rn(f) +Rn(f)−R(f) +R(f)

≤ ¯ ˆ ˆ ˆ ˆ ¯ ¯ ¯ ˆR(f) +R(f)−Rn(f) +Rn(f)−R(f) ≤ R(f) + 2 sup
f∈F

|Rn(f)−R(f)|.

Therefore, the quantity of interest that we need to bound is

sup |R̂n(f)−R(f)
f∈F

|.

Moreover, from the bounded difference inequality, we know that since the loss function ℓ(·, ·)
ˆis bounded by 1, supf∈F |Rn(f) − R(f)| has the bounded difference property with ci =

1
n

for i = 1, . . . , n, and the bounded difference inequality establishes

P

[

2t2
sup | ˆ ˆRn(f)−R(f) | − IE

[

sup |Rn(f)−R(f)
f∈F

|
]

≥ t
f∈F

]

−≤ exp

(

x2
i i

)

= e p
c

−2nt2 ,

which in turn yields

( )

∑

log (1/delta)| ˆsup Rn(f)−R(f)| ≤ I | ˆE

[

sup Rn(f)−R(f) δ
f∈F f

|
]

+
∈

√

, w.p. 1
F 2n

− .

ˆAs a result we only need to bound the expectation IE[supf∈F |Rn(f)−R(f)|].
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5.1.2 Symmetrization and Rademacher Complexity

Similar to the binary loss case we first use symmetrization technique and then intro-
duce Rademacher random variables. Let Dn = {(X1, Y1), . . . (Xn, Yn)} be the sample set
and define an independent sample (ghost sample) with the same distribution denoted by
D′

n = {(X ′
1, Y

′
1), . . . (X

′
n, Y

′
n)}( for each i, (X ′

i, Y
′
i ) is independent from Dn with the same

distribution as of (Xi, Yi)). Also, let σi ∈ {−1,+1} be i.i.d. Rad(1) random variables2
independent of Dn and D′

n. We have

IE

[

n
1

sup | ℓ i
f∈F n

∑

(Yi, f(X ))
i=1

− IE [ℓ(Yi, f(Xi))] |
]

n n
1 1

= IE

[

sup ℓ(Yi, f(X ℓ(Y ′
i)) IE i , f(X

′
i)) Dn

f∈F

|
n

∑

i=1

−
[

n

∑

i=1

|
]

|
]

n n
1 1

= IE

[

sup |IE
[

∑

ℓ(Yi, f(X
′

i)) ℓ(Yi , f(X
′
i)) Dn

f∈F n
i=1

−
n

∑

i=1

|
]

|
]

n(a)

≤ IE

[

n
1 1

sup IE

[

|
∑

ℓ(Yi, f(X
′

i))−
∑

ℓ(Y , f(X ′
i i))| |Dn

f∈F n n
i=1 i=1

]]

≤ IE

[

n n
1

sup |
∑ 1

ℓ(Yi, f(Xi)) ℓ(Y ′
i , f(X

′

f∈F n n i))
i=1

−
∑

i=1

|
]

(b) 1
= IE

[

n

sup |
∑

σi
(

ℓ(Yi, f(Xi))− ℓ(Y ′ X
f F n i , f(

′
i))

∈ i=1

)

|
]

n(c) 1≤ 2IE

[

sup
f∈F

|
n

∑

σiℓ(Yi, f(Xi))
i=1

|
]

n

≤ 2 sup IE

[

1
sup |

∑

σiℓ(yi, f(xi))
Dn f∈F n

i=1

|
]

.

where (a) follows from Jensen’s inequality with convex function f(x) = x , (b) follows from
the fact that (X ,Y ) and (X ′ ′

| |
i i i, Yi ) has the same distributions, and (c) follows from triangle

inequality.
Rademacher complexity: of a class F of functions for a given loss function ℓ(·, ·) and
samples Dn is defined as

n
1Rn(ℓ ◦ F) = sup IE

[

sup |
∑

σiℓ(yi, f(xi)) .
Dn f∈F n

i=1

|
]

Therefore, we have

IE

[

n
1

sup |
∑

ℓ(Yi, f(Xi))
f∈F n

i=1

− IE[ℓ(Yi, f(Xi))]|
]

≤ 2Rn(ℓ ◦ F)

and we only require to bound the Rademacher complexity.

5.1.3 Finite Class of functions

Suppose that the class of functions F is finite. We have the following bound.
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Theorem: Assume that F is finite and that ℓ takes values in [0, 1]. We have

√

2 log(2Rn(ℓ ◦ F)
|F|)≤ .

n

Proof. From the previous lecture, for B ⊆ n
R , we have that

n
1 2 log(2 B )Rn(B) = IE

[

max
b∈B

|
n

∑

σibi
i=1

|
]

| |≤ max
b∈B

|b|2
√

.
n

Here, we have


ℓ(y (x




1, f 1))
 .B = . ,.



ℓ(yn, f(xn )



f ∈ F





.

)



Since ℓ takes values in [0, 1], this





im



plies B



⊆ {b : |b|2
√≤





n}. Plugging this bound in the
previous inequality completes the proof.

5.2 The General Case

Recall that for the classification problem, we had F ⊂ {0, 1}X . We have seen that the
cardinality of the set {(f(x1), . . . , f(xn)), f

êrm
∈ F} plays an important role in bounding the

risk of f (this is not exactly what we used but the XOR argument of the previous lecture
allows us to show that the cardinality of this set is the same as the cardinality of the set
that interests us). In this lecture, this set might be uncountable. Therefore, we need to
introduce a metric on this set so that we can treat the close points in the same manner. To
this end we will define covering numbers (which basically plays the role of VC dimension
in the classification).

5.2.1 Covering Numbers

Definition: Given a set of functions F and a pseudo metric d on F ((F , d) is a metric
space) and ε > 0. An ε-net of (F , d) is a set V such that for any f ∈ F , there exists
g ∈ V such that d(f, g) ≤ ε. Moreover, the covering numbers of (F , d) are defined by

N(F , d, ε) = inf{|V | : V is an ε-net}.

For instance, for the F shown in the Figure 5.2.1 the set of points {1, 2, 3, 4, 5, 6} is a
covering. However, the covering number is 5 as point 6 can be removed from V and the
resulting points are still a covering.

Definition: Given x = (x1, . . . , xn), the conditional Rademacher average of a class of
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functions F is defined as

R̂x
n = IE

[

n
1

sup σ
f∈F

∣

∣

n

∑

if(xi)
i=1

]

∣

∣ .

Note that in what follows we consider a general class of functions F . However, for
applying the results in order to bound empirical risk minimization, we take xi to be (xi, yi)
and F to be ℓ ◦ F . We define the empirical l1 distance as

n

dx
1

1(f, g) = n

∑

i

=1

|f(x )
i

− g(xi)|.

Theorem: If 0 ≤ f ≤ 1 for all f ∈ F , then for any x = (x1, . . . , xn), we have

R̂x
n(F) ≤ inf

ε≥0

√

x
{ 2 log (2N(F , d
ε+ 1 , ε))

n

}

.

Proof. Fix x = (x1, . . . , xn) and ε > 0. Let V be a minimal ε-net of (F , dx1). Thus,
by definition we have that |V | = N(F , dx1 , ε). For any f ∈ F , define f◦ ∈ V such that
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dx1(f, f
◦) ≤ ε. We have that

n
1

Rx
n(F) = IE

[

sup σif(xi)
f∈F

|
n

∑

i=1

|
]

≤ IE

[

n n
1 1

sup |
∑

σi(f(xi) f◦(xi)) + IE sup σif
◦(xi)

f∈F n f∈F n
i=1

− |
] [

|
∑

i=1

|
]

≤ ε+ IE

[

n
1

max σif(xi)
f∈V

|
n

∑

i=1

|
]

√

2 log(2≤ ε+
|V |)

n
√

2 log(2N(
= ε+

F , dx1 , ε)) .
n

Since the previous bound holds for any ε, we can take the infimum over all ε ≥ 0 to obtain

x

√

{ 2 log(2N(F , dx
Rn(F) ≤ inf ε+ 1 , ε))

ε≥0 n

}

.

The previous bound clearly establishes a trade-off because as ε decreases N(F , dx1 , ε) in-
creases.

5.2.2 Computing Covering Numbers

As a warm-up, we will compute the covering number of the ℓ2 ball of radius 1 in d
R denoted

by B2. We will show that the covering is at most (3
ε
)d. There are several techniques to

prove this result: one is based on a probabilistic method argument and one is based on
greedily finding an ε-net. We will describe the later approach here. We select points in V
one after another so that at step k, we have uk ∈ B2 \ ∪k

j=1B(uj , ε). We will continue this
procedure until we run out of points. Let it be step N . This means that V = {u1, . . . , uN}
is an ε-net. We claim that the balls B(ui,

ε ) and B(uj ,
ε ) for any i, j 12 2 ∈ { , . . . , N} are

disjoint. The reason is that if v ∈ B(ui,
ε) ∩B(uj,

ε ), then we would have2 2

ε ε‖ui − uj‖2 ≤ ‖ui − v‖2 + ‖v − uj‖2 ≤ + = ε,
2 2

which contradicts the way we have chosen the points. On the other hand, we have that
∪N
j=1B(uj ,

ε ) ⊆ (1 + ε )B2. Comparing the volume of these two sets leads to2 2

ε ε|V |( )dvol(B2) ≤ (1 + )dvol(B2) ,
2 2

where vol(B2) denotes the volume of the unit Euclidean ball in d dimensions. It yields,

|V | ≤
(

1 + ε d

2 2 d 3 d

= + 1 .
(

ε ε
2

)

)

)d

(

≤
(

ε

)
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For any p ≥ 1, define
1

dxp(f, g) =

(

n
1 p
∑

|f(xi) g(x ) p
i ,

n
i=1

− |
)

and for p = ∞, define
dx∞(f, g) = max |f(xi)− g(xi)

i
|.

ˆUsing the previous theorem, in order to bound Rx
n we need to bound the covering number

with dx1 norm. We claim that it is sufficient to bound the covering number for the infinity-
norm. In order to show this, we will compare the covering number of the norms dxp(f, g) =

1
(

1
n

∑n
i=1 |f(x p

i)− g(xi)|
)

p for p ≥ 1 and conclude that a bound on N(F , dx∞, ε) implies a
bound on N(F , dxp , ε) for any p ≥ 1.

Proposition: For any 1 ≤ p ≤ q and ε > 0, we have that

N(F , dxp , ε) ≤ N(F , dxq , ε).

Proof. First note that if q = ∞, then the inequality evidently holds. Because, we have

n
1

(
∑ 1

|zi|p) p ≤ max
n i

i=1

|zi|,

which leads to B(f, dx∞, ε) ⊆ B(f, dxp, ε) and N(f, d∞, ε) ≥ N(f, dp, ε). Now suppose that
1 ≤ p ≤ q < ∞. Using Hölder’s inequality with r = q

p
≥ 1 we obtain

( ) 1 ( )(1 1 ) 1 ( ) 1 ( ) 1−n n n
1 p r p pr n

1 q

1
n

∑ 1

|z |pi ≤ −
n p

∑

i 1

∑

i=1

|zi|pr =
n

i=1 =

∑

.
i

|zi|q
=1

This inequality yeilds

B(f, dxq , ε) = {g : dxq (f, g) ≤ ε} ⊆ B(f, dxp , ε),

which leads to N(f, dq, ε) ≥ N(f, dp, ε).

Using this propositions we only need to bound N(F , dx∞, ε).
Let the function class be F = {f(x) = 〈f, x〉, f ∈ Bd, x ∈ Bd}, where 1 1

p q + = 1. This
p q

leads to |f | ≤ 1.
Claim: N(F , dx∞, ε) ≤ (2 )d.

ε

This leads to

x

√

2d log(4/ε)
R̂n(F) ≤ inf

0
{ε+ .

ε> n
}

Taking ε = O(
√

d logn), we obtain
n

R̂x d
n(F) ≤ O(

√

log n
).

n
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