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In this lecture, we continue to discuss the effect of noise on the rate of the excess risk
ˆ ˆ ˆE(h) = R(h) − R(h∗) where h is the empirical risk minimizer. In the binary classification

model, noise roughly means how close the regression function η is from 1
2
. In particular, if

η = 1 then we observe only noise, and if η ∈ {0, 1} we are in the noiseless case which has
2

been studied last time. Especially, we achieved the fast rate logM in the noiseless case byn
¯assuming h∗ ∈ H which implies that h = h∗. This assumption was essential for the proof

and we will see why it is necessary again in the following section.

3.2 Noise conditions

The noiseless assumption is rather unrealistic, so it is natural to ask what the rate of excess
risk is when the noise is present but can be controlled. Instead of the condition η ∈ {0, 1},
we can control the noise by assuming that η is uniformly bounded away from 1

2
, which is

the motivation of the following definition.

Definition (Massart’s noise condition): The noise in binary classification is said
to satisfy Massart’s condition with constant γ ∈ (0, 1

2
] if |η(X) − 1 | ≥ γ almost surely.

2

Once uniform boundedness is assumed, the fast rate simply follows from last proof with
appropriate modification of constants.

ˆ ˆ ˆTheorem: Let cE(h) denote the excess risk of the empirical risk minimizer h = herm.
If Massart’s noise condition is satisfied with constant γ, then

log(M/δ)ˆE(h) ≤
γn

with probability at least 1− δ. (In particular γ = 1 gives exactly the noiseless case.)
2

Proof. ¯ ¯Define Zi(h) = 1I(h(Xi) = Yi)− 1I(h(Xi) = Yi). By the assumption h = h∗ and the
ˆ ˆdefinition of h = herm,

ˆ ˆ ¯E(h) = R(h)−R(h)

ˆ ˆ ˆ ¯ ˆ ¯ ˆ ˆ ¯ ˆ= Rn(h)−Rn(h) +Rn(h)−Rn(h)− R(h)−R(h) (3.1)
n

1 ˆ≤ )

( )

∑

(

ˆZi(h)− IE[Zi(h ]
)

. (3.2)
n

i=1

Hence it suffices to bound the deviation of
∑

i Zi from its expectation. To this end, we
hope to apply Bernstein’s inequality. Since

Var[Zi(h)] ≤ IE[Z 2 ¯
i(h) ] = IP[h(Xi) = h(Xi)],
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we have that for any 1 ≤ j ≤ M ,

n
1 ∑

¯Var[Zi(hj)] ≤ IP[hj(X) = h(X)] =: σ2

n j .
i=1

Bernstein’s inequality implies that

n
[ 1 ∑

] ( nt2
IP (Zi(hj)− IE[Zi(hj)]) > t ≤ exp −

n 2σ2
i=1 j +

2
3
t

) δ
=: .

M

Applying a union bound over 1 ≤ j ≤ M and taking

2σ2
j log(M/δ) 2 log(M/δ)

t = t0(j) := max

√

(

,
n 3n

)

,

we get that
n

1 ∑

(Zi(hj)− IE[Zi(hj)]) ≤ t0(j) (3.3)
n

i=1

for all 1 ≤ j ≤ M with probability at least 1− δ.
ˆSuppose h = hˆ. It follows from (3.2) and (3.3) that with probability at least 1− δ,j

ˆE(h) ≤ t ˆ
0(j).

(Note that so far the proof is exactly the same as the noiseless case.) Since |η(X)− 1
2
| ≥ γ

¯a.s. and h = h∗,

ˆ ˆ ¯E(h) = IE[|2η(X) − 1|1I(h(X) = h∗(X))] ≥ 2γIP[hˆ(X) = h(X)] = 2γσ2
ˆ .j j

Therefore,
√

ˆE(h) log(M/δ) 2 log(M/δ)ˆE(h) ≤ max , , (3.4)
γn 3n

so we conclude that with probabilit

(

y at least 1− δ,

)

log(M/δ)ˆE(h) ≤ .
γn

¯The assumption that h = h∗ was used twice in the proof. First it enables us to ignore
the approximation error and only study the stochastic error. More importantly, it makes
the excess risk appear on the right-hand side of (3.4) so that we can rearrange the excess
risk to get the fast rate.

Massart’s noise condition is still somewhat strong because it assumes uniform bounded-
ness of η from 1

2
. Instead, we can allow η to be close to 1

2
but only with small probability,

and this is the content of next definition.
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Definition (Tsybakov’s noise condition or Mammen-Tsybakov noise condi-
tion): The noise in binary classification is said to satisfy Tsybakov’s condition if there
exists α ∈ (0, 1), C 1

0 > 0 and t0 ∈ (0,
2
] such that

1 α

IP[|η(X) − | ≤ t] ≤ C 1
0t −α

2

for all t ∈ [0, t0].

α

In particular, as α → 1, t 1−α → 0
α

, so this recovers Massart’s condition with γ = t0 and
we have the fast rate. As α → 0, t 1−α → 1, so the condition is void and we have the slow
rate. In between, it is natural to expect fast rate (meaning faster than slow rate) whose
order depends on α. We will see that this is indeed the case.

Lemma: Under Tsybakov’s noise condition with constants α,C0 and t0, we have

IP[h(X) = h∗(X)] ≤ CE(h)α

for any classifier h where C = C(α,C0, t0) is a constant.

Proof. We have

E(h) = IE[|2η(X) − 1|1I(h(X) = h∗(X))]

1
≥ IE[|2η(X) − 1|1I(|η(X) − | > t)1I(h(X) = h∗(X))]

2
1

≥ 2tIP[|η(X) − | > t, h(X) = h∗(X)]
2

1
≥ 2tIP[h(X) = h∗(X)]− 2tIP[|η(X) − | ≤ t]

2
1

≥ 2tIP[h(X) = h∗(X)]− 2C0t 1−α

1

where Tsybakov’s condition was used in the last step. Take t = cIP[h(X) = h∗(X)]
−α

α for
some positive c = c(α,C0, t0) to be chosen later. We assume that c ≤ t0 to guarantee that
t ∈ [0, t0]. Since α ∈ (0, 1),

E(h) ≥ 2cIP[h(X) = h∗(X)]1/α
1

− 2C c 1−α IP[h(X) = h∗ 1
0 (X)] /α

≥ cIP[h(X) = h∗(X)]1/α

by selecting c sufficiently small depending on α and C0. Therefore

1
IP[h(X) = h∗(X)] ≤ E(h)α

cα

and choosing C = C(α,C0, t0) := c−α completes the proof.

Having established the key lemma, we are ready to prove the promised fast rate under
Tsybakov’s noise condition.
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Theorem: If Tsybakov’s noise condition is satisfied with constant α,C0 and t0, then
there exists a constant C = C(α,C0, t0) such that

l )ˆE h) ≤ C
( og(M/δ

(
1

n

)

2−α

with probability at least 1− δ.

This rate of excess risk parametrized by α is indeed an interpolation of the slow (α → 0)
ˆand the fast rate (α → 1). Futhermore, note that the empirical risk minimizer h does not

depend on the parameter α at all! It automatically adjusts to the noise level, which is a
very nice feature of the empirical risk minimizer.

Proof. The majority of last proof remains valid and we will explain the difference. After
establishing that

ˆE(h) ≤ t0(ĵ),

we note that the lemma gives

ˆσ2 ¯ ˆ
ˆ = IP[h(X) 6= h(X)] ≤ CE(h)α.
j

It follows that
√

ˆ
( 2CE(h)α log(M/δ) 2 log(M/δ)ˆE(h) ≤ max ,

n 3n

)

( 2C log M 2ˆ
1

E(h) ≤ max
(

δ
)

2−α

log(M/δ)
,

)

.
n 3n

and thus

4. VAPNIK-CHERVONENKIS (VC) THEORY

The upper bounds proved so far are meaningful only for a finite dictionary H, because if
M = |H| is infinite all of the bounds we have will simply be infinity. To extend previous
results to the infinite case, we essentially need the condition that only a finite number of
elements in an infinite dictionary H really matter. This is the objective of the Vapnik-
Chervonenkis (VC) theory which was developed in 1971.

4.1 Empirical measure

Recall from previous proofs (see (3.1) for example) that the key quantity we need to control
is

ˆ2 sup
(

Rn(h)−R(h) .
h∈H

Instead of the union bound which would not work in th

)

e infinite case, we seek some bound
that potentially depends on n and the complexity of the set H. One approach is to consider
some metric structure on H and hope that if two elements in H are close, then the quantity
evaluated at these two elements are also close. On the other hand, the VC theory is more
combinatorial and does not involve any metric space structure as we will see.
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By definition

n
1

R̂n(h)−R(h) =
∑

(

1I(h(Xi) = Yi)− IE[1I(h(Xi) = Yi)]
n

i=1

)

.

Let Z = (X,Y ) and Zi = (Xi, Yi), and let A denote the class of measurable sets in the
sample space X × {0, 1}. For a classifier h, define Ah ∈ A by

{Zi ∈ Ah} = {h(Xi) = Yi}.

Moreover, define measures µn and µ on A by

n
1

µn(A) =
∑

1I(Zi ∈ A) and µ(A) = IP[Zi ∈ A]
n

i=1

for A ∈ A. With this notation, the slow rate we proved is just

log(2|A|/δ)ˆsupRn(h) −R(h) = sup |µn(A)− µ(A)| ≤
h∈H A∈A

√

.
2n

Since this is not accessible in the infinite case, we hope to use one of the concentration
inequalities to give an upper bound. Note that µn(A) is a sum of random variables that may
not be independent, so the only tool we can use now is the bounded difference inequality.

If we change the value of only one zi in the function

z1, . . . , zn 7→ sup |µn(A)− µ(A)|,
A∈A

the value of the function will differ by at most 1/n. Hence it satisfies the bounded difference
assumption with ci = 1/n for all 1 ≤ i ≤ n. Applying the bounded difference inequality, we
get that

∣ log(2/δ)
∣

sup |µn(A)− µ(A)| − IE[sup |µn(A)− µ(A)|] ≤
A∈A A∈A

√

2n

with probability

∣

at least 1− δ. Note that this already preclu

∣

∣

∣

des any fast rate (faster than
n−1/2). To achieve fast rate, we need Talagrand inequality and localization techniques which
are beyond the scope of this section.

It follows that with probability at least 1− δ,

log(2/δ)
sup |µn(A)− µ(A)| ≤ IE[sup |µn(A)− µ(A)|] +

A A∈A

√

.
A∈ 2n

We will now focus on bounding the first term on the right-hand side. To this end, we need
a technique called symmetrization, which is the subject of the next section.

4.2 Symmetrization and Rademacher complexity

Symmetrization is a frequently used technique in machine learning. Let D = {Z1, . . . , Zn}
be the sample set. To employ symmetrization, we take another independent copy of the
sample set D′ = {Z ′

1, . . . , Z
′
n}. This sample only exists for the proof, so it is sometimes

referred to as a ghost sample. Then we have

n n
1 1

µ(A) = IP[Z ∈ A] = IE[
∑

1I(Z ′
i ∈ A)] = IE[ 1I(Z ′

i ∈ A)|D] = IE[µ′

n n n(A)|D]
i=1

∑

i=1
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nwhere µ′
n := 1

∑

i=1 1I(Z
′
i ∈ A). Thus by Jensen’s inequality,n

IE[sup |µn(A)− µ(A)|] = IE
[

sup ∣

∣

µn(A)− IE[µ′
n(A)|D]

A∈A A∈A

≤ IE sup IE[|µn(A)− µ′
n(A)| |D

∣

∣

]

]

≤

[

A∈A

IE
[

sup |µ ′
n(A) − µn(A)|

]

A∈A

n
1

]

= IE
[

sup
∣

∑

(

1I(Z ′
i ∈ A)− 1I(Z

A∈A n i ∈ A)
i=1

)∣]

.

Since D′ has the same distribution of D, by sy

∣

mmetry 1I(Zi ∈ A)− 1I(Z ′

∣

i ∈ A) has the same
distribution as σi

(

1I(Zi ∈ A)− 1I(Z ′
i ∈ A)

)

where σ1, . . . , σn are i.i.d. Rad(1
2
), i.e.

1
IP[σi = 1] = IP[σi = −1] = ,

2

and σi’s are taken to be independent of both samples. Therefore,

n

IE[sup |µn(A)− µ(A)|] ≤ IE
A A

[

sup ′

∈ A∈A

∣

∣

1 ∑

σi
(

1I(Zi ∈ A)− 1I(Z
n i ∈ A)

i=1

n

)
∣
]

≤ 2IE
[ 1

∣

sup
∣

∑

σi1I(Zi ∈ A) .
A∈A n

i=1

∣
]

(4.5)

Using symmetrization we have bounded IE[sup

∣

A∈A |µn(A)−µ(A)|

∣

] by a much nicer quantity.
Yet we still need an upper bound of the last quantity that depends only on the structure
of A but not on the random sample {Zi}. This is achieved by taking the supremum over
all zi ∈ X × {0, 1} =: Y.

Definition: The Rademacher complexity of a family of sets A in a space Y is defined
to be the quantity

n

Rn(A) = sup sup
∣ 1

IE
[

∑

σi1I(zi ∈ A)
z1,...,zn∈Y A∈A n

i=1

∣]

.

The Rademacher complexity of a set B ⊂ I

∣

Rn is defined to b

∣

e

n
1

Rn(B) = IE
[

sup
b∈B

∣

∣

n

∑

σibi
i=1

∣

∣

]

.

We conclude from (4.5) and the definition that

IE[sup |µn(A)− µ(A)|] ≤ 2Rn(A).
A∈A

nIn the definition of Rademacher complexity of a set, the quantity 1 sn i=1 σibi measure
how well a vector b ∈ B correlates with a random sign pattern {σi}. The more complex
B is, the better some vector in B can replicate a sign pattern. In

∣

∣

pa

∑

rticular, i

∣

∣

f B is the
full hypercube [−1, 1]n, then Rn(B) = 1. However, if B ⊂ [−1, 1]n contains only k-sparse
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vectors, then Rn(B) = k/n. Hence Rn(B) is indeed a measurement of the complexity of
the set B.

The set of vectors to our interest in the definition of Rademacher complexity of A is

T (z) := {(1I(z1 ∈ A), . . . , 1I(zn ∈ A))T , A ∈ A}.

Thus the key quantity here is the cardinality of T (z), i.e., the number of sign patterns these
vectors can replicate as A ranges over A. Although the cardinality of A may be infinite,
the cardinality of T (z) is bounded by 2n.
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