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7. BLACKWELL’S APPROACHABILITY

7.1 Vector Losses

David Blackwell introduced approachability in 1956 as a generalization of zero sum game
theory to vector payoffs. Born in 1919, Blackwell was the first black tenured professor at
UC Berkeley and the seventh black PhD in math in the US.

Recall our setup for online linear optimization. At time t, we choose an action at ∈ ∆K

and the adversary chooses zt ∈ B∞(1). We then get a loss ℓ(at, zt) = 〈at, zt〉. In the full
information case, where we observe zt and not just ℓ(at, zt), this is the same as prediction
with expert advice. Exponential weights leads to a regret bound

Rn ≤
√

n

2
log(K).

The setup of a zero sum game is nearly identical:

• Player 1 plays a mixed strategy p ∈ ∆n.

• Player 2 plays q ∈ ∆m.

• Player 1’s payoff is p⊤Mq.

Here M is the game’s payoff matrix.

Theorem: Von Neumann Minimax Theorem

max min ⊤p Mq = min max ⊤p Mq.
p∈∆n q∈∆m q∈∆m p∈∆n

The minimax is called the value of the game. Each player can prevent the other from doing
any better than this. The minimax theorem implies that if there is a good response pq to
any individual q, then there is a silver bullet strategy p that works for any q.

Corollary: If ∀q ∈ ∆n, ∃p such that p⊤Mq ≥ c, then ∃p such that ∀q, p⊤Mq ≥ c.

Von Neumann’s minimax theorem can be extended to more general sets. The following
theorem is due to Sion (1958).

Theorem: Sion’s Minimax Theorem Let A and Z be convex, compact spaces, and
f : A × Z → R. If f(a, ·) is upper semicontinuous and quasiconcave on Z ∀a ∈ A and
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f(·, z) is lower semicontinuous and quasiconvex on A ∀z ∈ Z, then

inf sup f(a, z) = sup inf f(a, z).
a∈A z∈Z z∈ aZ ∈A

(Note - this wasn’t given explicitly in lecture, but we do use it later.) Quasiconvex and
quasiconcave are weaker conditions than convex and concave respectively.

Blackwell looked at the case with vector losses. We have the following setup:

• Player 1 plays a ∈ A

• Player 2 plays z ∈ Z

• Player 1’s payoff is ℓ(a, z) ∈ d
R

We suppose A and Z are both compact and convex, that ℓ(a, z) is bilinear, and that
‖ℓ(a, z)‖ ≤ R ∀a ∈ A, z ∈ Z. All norms in this section are Euclidean norms. Can we
translate the minimax theorem directly to this new setting? That is, if we fix a set S ⊂ d

R ,
and if ∀z ∃a such that ℓ(a, z) ∈ S, does there exist an a such that ∀z ℓ(a, z) ∈ S?

No. We’ll construct a counterexample. Let A = Z = [0, 1], ℓ(a, z) = (a, z), and
S = {(a, z) ∈ [0, 1]2 : a = z}. Clearly, for any z ∈ Z there is an a ∈ A such that a = z and
ℓ(a, z) ∈ S, but there is no a ∈ A such that ∀z, a = z.

Instead of looking for a single best strategy, we’ll play a repeated game. At time t,
player 1 plays at = at(a1, z1, . . . , at−1, zt−1) and player 2 plays zt = zt(a1, z1, . . . , at−1, zt−1).
Player 1’s average loss after n iterations is

1
ℓ̄n =

n
∑

ℓ(at, zt)
n

t=1

Let d(x, S) be the distance between a point x ∈ d
R and the set S, i.e.

d(x, S) = inf
s∈S

‖x− s‖.

If S is convex, the infimum is a minimum attained only at the projection of x in S.

Definition: A set S is approachable if there exists a strategy at = at(a1, z1, . . . , at−1, zt−1)
¯such that limn→∞ d(ℓn, S) = 0.

Whether a set is approachable depends on the loss function ℓ(a, z). In our example, we can
choose a0 = 0 and at = zt−1 to get

n
1

ℓ̄lim n = lim
∑

(zt−1, zt) = (z̄, z̄) ∈ S.
n→∞ n→∞ n

t=1

So this S is approachable.

7.2 Blackwell’s Theorem

We have the same conditions on A, Z, and ℓ(a, z) as before.
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Theorem: Blackwell’s Theorem Let S be a closed convex set of 2
R with ‖x‖ ≤ R

∀x ∈ S. If ∀z, ∃a such that ℓ(a, z) ∈ S, then S is approachable.
Moreover, there exists a strategy such that

2R
d ℓ̄( n, S) ≤ √

n

Proof. We’ll prove the rate; approachability of S follows immediately. The idea here is to
transform the problem to a scalar one where Sion’s theorem applies by using half spaces.

Suppose we have a half space H = {x ∈ d
R : 〈w, x〉 ≤ c} with S ⊂ H. By assumption,

∀z ∃a such that ℓ(a, z) ∈ H. That is, ∀z ∃a such that 〈w, ℓ(a, z)〉 ≤ c, or

maxmin〈w, ℓ(a, z)〉 ≤ c.
z∈Z a∈A

By Sion’s theorem,

minmax〈w, ℓ(a, z)
a∈A z∈Z

〉 ≤ c.

So ∃a∗H such that ∀z ℓ(a, z) ∈ H.
This works for any H containing S. We want to choose Ht so that ℓ(at, zt) brings the

¯average ℓ ¯
t closer to S than ℓt−1. An intuitive choice is to have the hyperplane W bounding

H ¯
t be the separating hyperplane between S and ℓt−1 closest to S. This is Blackwell’s

¯strategy: let W be the hyperplane through πt ∈ argminµ∈S ‖ℓt−1 − µ‖ with normal vector
ℓ̄t−1 − πt. Then

H = {x ∈ d
R : 〈x− πt, ℓ̄t−1 − πt〉 ≤ 0}.

Find a∗H and play it.
We need one more equality before proving convergence. The average loss can be ex-

panded:

t 1
ℓ̄t t−1 t

t t
t

=
− 1 t 1 1¯(ℓt−1 − πt) +

−
πt + ℓt

t t t

Now we look at the distance of the average from S, using the above equation and the
definition of πt+1:

d ¯(ℓ , S)2 ℓ̄t = ‖ t − πt+1‖2

≤ ‖ℓ̄t − πt‖2

=

∥

∥

∥

2
t− 1 1¯(ℓt−1 − πt) + (ℓt − πt)

t

∥

∥ t

ℓt

∥

=

(

t− 1
)2

d ¯(ℓ 2 π 2
t t 1 ¯

t−1, S) +
‖ −

∥

∥

‖
+ 2

− 〈ℓt − πt, ℓ
t t2 t2

t−1 − πt〉

Since ℓt ∈ H, the last term is negative; since ℓt and πt are both bounded by R, the middle
2

term is bounded by 4R
2 . Letting µ2

t = t2d(ℓ̄ 2
t, S) , we have a recurrence relation

t

µ2
t ≤ µ2

t−1 + 4R2,
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=
−

ℓ̄ +
1
ℓ



implying

µ2
n ≤ 4nR2.

Rewriting in terms of the distance gives the desired bound,

2R
d ℓ̄( t, S) ≤ √

n

Note that this proof fails for nonconvex S.

7.3 Regret Minimization via Approachability

Consider the case A = ∆ K
K , Z = B∞(1). As we showed before, exponential weights Rn ≤

c
√

n log(K). We can get the same dependence on n with an approachability-based strategy.
First recall that

n n
1 1
Rn =

∑ 1
ℓ(at, zt)−min ℓ(ej , zt)

n n j n
t=1

∑

t=1

n n

= m x

[

1
a

∑ 1
ℓ(at, zt) ℓ(ej , zt)

j n n
t=1

−
∑

t=1

]

If we define a vector average loss

n
1

ℓ̄n =
∑

(ℓ(at, zt)− ℓ(e1, zt), . . . , ℓ(a
K

Rt, zt) e

t=1

− ℓ( K , zt))
n

∈ ,

Rn ¯ ¯
n

→ 0 if and only if all components of ℓn are nonpositive. That is, we need d( −ℓn, OK) → 0,
where −O = {x ∈ K

R : −1 ≤ xi ≤ 0, iK ∀ } is the nonpositive orthant. Using Blackwell’s
approachability strategy, we get

Rn ≤ d(ℓ̄ −
n, O

√

K
) ≤ c .

n K n

The K dependence is worse than exponential weights,
√
K instead of log(K).

How do we find a∗H? As a concrete example, let K = 2. We need a

√

∗
H tp satisfy

〈 ∗w, ℓ( ∗aH , z)〉 = 〈w, 〈aH , z〉y − z〉 ≤ c

for all z. Here y is the vector of all ones. Note that c ≥ 0 since 0 is in S and therefore in
H. Rearranging,

〈 ∗aH , z〉〈w, y〉 ≤ 〈w, z〉 + c,

Choosing a∗H = w will work; the inequality reduces to〈w,y〉

〈w, z〉 ≤ 〈w, z〉 + c.

Approachability in the bandit setting with only partial feedback is still an open problem.
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