
18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 21
Scribe: Ali Makhdoumi Nov. 25, 2015

6. LINEAR BANDITS

Recall form last lectures that in prediction with expert advise, at each time t, the player
plays at ∈ {e1, . . . , ek} and the adversary plays zt such that l(at, zt) ≤ 1 for some loss
function. One example of such loss function is linear function l(at, zt) = aTt zt where |zt|∞ ≤
1. Linear bandits are a more general setting where the player selects an action at ∈ A ⊂ R

k,
where A is a convex set and the adversary selects z T

t ∈ Z such that |zt at| ≤ 1. Similar to
the prediction with expert advise, the regret is defined as

Rn = E

[

n n
∑

TAt zt

]

−min Ta zt,
a∈K

t=1

∑

t=1

where At is a random variable in A. Note that in the prediction with expert advise, the set
A was essentially a polyhedron and we had min n T

a∈K aT zt=1 t = min1≤j≤k e zj t. However, in

the linear bandit setting the minimizer of aT zt can be any point of the set A and essentially
the umber experts that the player tries to ”comp

∑

ete” with are infinity. Similar, to the
prediction with expert advise we have two settings:

1 Full feedback: after time t, the player observes zt.

2 Bandit feedback: after time t, the player observes AT
t zt, where At is the action that

player has chosen at time t.

We next, see if we can use the bounds we have developed in the prediction with expert
advise in this setting. In particular, we have shown the following bounds for prediction
with expert advise:

1 Prediction with k expert advise, full feedback: Rn
√≤ 2n log k.

2 Prediction with k expert advise, bandit feedback: Rn
√≤ 2nk log k.

The idea to deal with linear bandits is to discretize the set A. Suppose that A is bounded
(e.g., A ⊂ B2, where B2 is the l2 ball in R

k). We can use a 1 -covering ofn A which we
have shown to be of size (smaller than)O(nk). This means there exist y1, . . . , y|N | such that

for any a ∈ A, there exist yi such that ||yi − a|| ≤ 1 . We now can bound the regret forn
general case, where the experts can be any point in A, based on the regret on the discrete
set, N = {y1, . . . , y|N |},as follows.

Rn = E

[

n
]

n
∑

TAt zt
t 1

−min Ta zt
a∈A

= t=1
[

n

∑

n

= E

∑

TAt zt

]

−min Ta zt + o(1).
a∈N

t=1

∑

t=1

Therefore, we restrict actions At to a combination of the actions that belong to {y1, . . . , y|N |}
(we can always do this), then using the bounds for the prediction with expert advise, we
obtain the following bounds:
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1 Linear bandit, full feedback: Rn ≤
√

2n log(nk) = O(
√
kn log n), which in terms

of dependency to n is of order O(
√
n) that is what we expect to have.

2 Linear bandit, bandit feedback: Rn ≤
√

2nnk log(nk) = Ω(n), which is useless in
terms of dependency of n as we expect to obtain O(

√
n) behavior.

The topic of this lecture is to provide bounds for the linear bandit in the bandit feedback.
Problem Setup: Let us recap the problem formulation:

• at time t, player chooses action at ∈ A ⊂ [−1, 1]k.

• at time t, adversary chooses zt ∈ Z ⊂ R
k, where aTt zt = 〈at, zt〉 ∈ [0, 1].

• Bandit feedback: player observes 〈at, zt〉( rather than zt in the full feedback setup).

Literature: O(n3/4) regret bound has been shown in [BB04]. Later on this bound has
been improved to O(n2/3) in [BK04] and [VH06] with ”Geometric Hedge algorithm”, which
we will describe and analyze below. We need the following assumption to show the results:
Assumption: There exist δ such that δe1, . . . , δek ∈ A. This assumption guarantees that
A has full-dimension around zero.
We also discretize A with a 1 -net of size Cnk and only consider the resulting discrete setn
and denote it by A, where |A| ≤ (3n)k. All we need to do is to bound

Rn = E

[

n
∑

TAt zt

]

n

−min
∑

Ta zt.
a∈A

t=1 t=1

For any t and a, we define

t−1exp η

t(

(

− zs=1 ˆ
T
s a

p a) = ,
t−1

a∈A exp

∑

)

(

−η zs=1 ˆ
T
s a
)

where η is a parameter (that we will

∑

choose later) an

∑

d ẑt is defined to incorporate the idea of
exploration versus exploitation. The algorithm which is termed Geometric Hedge Algorithm

is as follows:
At time t we have

• Exploitation: with probability 1− γ draw at according to pt and let ẑt = 0.

• Exploration: with probability γ let at = δej for some 1k ≤ j ≤ k and ẑt =
k j)
2 〈 (

a k
t, zt aγ

〉 t = z e
δ γ t j .

Note that δ is the the parameter that we have by assumption on the set A, and η and γ

are the parameters of the algorithm that we shall choose later.

Theorem: Using Geometric Hedge algorithm for linear bandit with bandit feedback,

with γ = 1 = g
1/3 and η

√

lo n
4/3 , we have

n kn

E[Rn] ≤ 2/3Cn
√

log 3/2n k .

2



Proof. Let the overall distribution of at be qt defined as qt = (1− γ)pt + γU , where U is a
uniform distribution over the set {δe1, . . . , δek}. Under this distribution, ẑt is an unbiased
estimator of zt, i.e.,

k
γ k (

Eat∼qt [ẑt] = 0(1 − j)
γ) +

∑

zt ej = zt.
k γ

j=1

following the same lines of the proof that we had for analyzing exponential weight algorithm,
we will define

1

wt = e p z

a∈A

(

t−

x − Tη a ŝ

s=1

)

∑ ∑

.

We then have

log

(

wt+1
)

= log

(

∑

Tpt(a) exp ηa ẑt
wt

a∈

(

−
A

)

)

e−
2x≤1−x+x

≤ 2

log

(

∑

T 1
( )

(

1− ˆ + 2( T 2pt a ηa zt η a ẑs)
2

a∈A

)

)

( − T 1
= log

(

1 +
∑

)

(

ˆ + 2( T 2pt a ηa zt η a ẑt)
2

a∈A

)

)

log(1+x)≤x

≤
∑

T 1 2pt(
T 2a)

(

−ηa ẑt + η (a ẑt)
2

a∈A

)

.

Taking expectation from both sides leads to

Eat∼qt

[

wt+1
log

(

wt

)]

≤ −ηEat∼qt

[

pt(a)
Ta ẑt

a∈A

] [

∑ η2
+ T

Eat∼qt

∑

2pt(a)(a ẑt)
2

a∈A

]

= −
[

2
T η

ηE t∼pt at ẑt
]

+ 2
Ea a ∼q pt(a)(

Ta ẑt)
2 t t

[

a

∑

∈A

]

2
qt=(1−γ)pt+γU η

=
− γ

Eat∼qt

[

T η
at ẑ

T 2
Et a− γ

]

+ η
1 − ∼U

1 t ẑ
T

a t + E
γ t a

2 t∼qt

[

pt(a)(a ẑt)
a∈A

]

aT zt≤1 −η [ ] ηγ η2

[ ]

∑

t ≤ T
Eat∼qt at ẑt + + ∼qt

[

∑

T 2
Eat pt(a)(a ẑ

1− γ 1− t)
γ 2

a∈A

]

.

We next, take summation of the previous relation for t = 1 up to n and use a telescopic
cancellation to obtain

n n
η T ηγ η2 T 2

E [logw E+ ] ≤ [logw1]− En 1

[

∑

at ẑt

]

+ n+ E pt(a)(a ẑ
1− t)

γ 1 γ 2
t=1

−

[

∑

t=1 a

∑

∈A

]

n n
ηγ η2≤ E [log ]− ηE

[

∑

T Tat ẑ
2w1 t

]

+ n+ E pt(a)(a ẑt) . (6.1)
1 γ 2

t=1
−

[

∑

t=1 a∈A

]

∑
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Note that for all a∗ ∈ A we have

n

log(wn+1) = log

( (

n

a

))

∑

exp −η

∈A

∑

Ta ẑs
s=1

≥ −η
∑

.

s=

〈 ∗a , ẑs
1

〉

Using E[ẑs] = zs, leads to

n

E [log(wn+1)] ≥ −η
∑

∗a , zs . (6.2)
s=1

〈 〉

We also have that

log(w1) = log |A| ≤ 2k log n. (6.3)

Plugging (6.2) and (6.3) into (6.1), leads to

γ η
E[Rn] ≤ n+ E

[

n
]

∑∑

pt a)(
T 2 n

( a t)
2 k log

ẑ + . (6.4)
1− γ 2 η

t=1 a∈A

nIt remains to control the quadratic term E
[
∑

p a aT z 2
t=1 a∈A t( )( t̂) . We use the fact that

| (j)
zt |, | (j)

at | ≤ 1 to obtain

∑
]

E

[

n n
∑∑

T 2 T 2pt(a)(a ẑt) = p a)Et( qt [(a ẑt) ]
t=1 a∈A

]

∑

t=1 a

∑

∈A

n k

=
∑∑

2
γ k (j)

pt(a)



(

(1− γ)0 +
∑

)

[ j 2a zt ]
k γ

t=1 a∈A j=1



(j) n|ajzt |≤1



≤
∑∑ k2

(a)

(

2

t

)

k
p = n .

γ γ
t=1 a∈A

Plugging this bound into (6.4), we have

η k2 2k log n
E[Rn] ≤ γn+ n + .

2 γ η

Letting lognγ = 1
/3 and η =

n1

√

kn4/3 leads to

E[ 3/2 2/3Rn] ≤ Ck n
√

log n.

Literature: The bound we just proved has been improved in [VKH07] where they show
O(d3/2

√
n log n) bound with a better exploration in the algorithm. The exploration that we

used in the algorithm was coordinate-wise. The key is that we have a linear problem and we
can use better tools from linear regression such as least square estimation. However, we will
describe a slightly different approach in which we never explore and the exploration is com-
pletely done with the exponential weighting. This approach also gives a better performance
in terms of the dependency on k. In particular, we obtain the bound O(d

√
n log n) which

coincides with the bound recently shown in [BCK 12] using a John’s ellipsoid.
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−1Theorem: Let Ct = Eat∼qt[a aTt ], ẑt = (aTt t zt)Ct at, and γ = 0 (so that pt = qt). Using

Geometric Hedge algorithm with η = 2
√

logn for linear bandit with bandit feedbackn

leads to

E[Rn] ≤ CK
√

n log n.

Proof. We follow the same lines of the proof as the previous theorem to obtain (6.4). Note
that the only fact that we used in order to obtain (6.4) is unbiasedness, i.e., E[ẑt] = zt,
which holds here as well since

E[ẑ −
Et] = [ 1 TCt atat zt] =

−1C Et [ Tatat ]zt = zt.

Note that we can use pseudo-inverse instead of inverse so that invertibility is not an issue.
Therefore, rewriting (6.4) with γ = 0, we obtain

[

n
η ∑∑

T 2 2k log n
E[Rn] ≤ Eat∼pt pt(a)(a ẑt)

∈

]

+ .
2 η

t=1 a A

We now bound the quadratic term as follows

n n
T 2 T 2

Eat∼pt

[

∑∑

pt(a)(a ẑt)

]

=
∑∑

p a)Et( at∼pt (a ẑt)
t=1 a∈A t=1 a∈A

[ ]

CT
t =C −1 n n

T
t, ẑt=(at zt)Ct at

=
∑

a) Tp a Et( ẑ T 2
tˆ a = pt(

T
t a) Tz a E ( −1 T −1at zt) Ct atat Ct a

t=1 a

∑

∈A

[ ]

∑

t=1 a

T

∑

∈A

n n|a

[

t zt|≤1 E

]

∑∑

T −1 T −1 [a≤ taT

p (a)
t ]=Ct T −1a C Et t atat Ct a = pt(a)a Ct a

t=1 a∈A

[ ]

∑

t=1 a

∑

∈A
n n
∑∑ tr(AB)=tr(BA)

= ( )tr( T −1 1p t r( −
t a a C a) =

∑∑

pt(a)t
TCt aa )

t=1 a∈A t=1 a∈A
n n n

=
∑

tr( −1C Et a∼pt[
Taa ]) =

∑

tr( −1Ct Ct) = tr(Ik) = kn.

t=1 t=1

∑

t=1

Plugging this bound into previous bound yields

η 2k log n
E[Rn] ≤ nk + .

2 η

lognLetting η = 2
√

, leads to E[Rn]n ≤ Ck
√
n log n.
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