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In this lecture, we talk about the adversarial bandits under limited feedback. Adver-
sarial bandit is a setup in which the loss function l(a, z) : AxZ is determinitic. Lim-
ited feedback means that the information available to the DM after the step t is It =
{l(a1, z1), ..., l(at−1, zt)}, namely consits of the realised losses of the past steps only.

5. ADVERSARIAL BANDITS

Consider the problem of prediction with expert advice. Let the set of adversary moves be Z
and the set of actions of a decision maker A = {e1, ..., eK}. At time t, at ∈ A and zt ∈ Z are
simultaneously revealed.Denote the loss associated to the decision at ∈ A and his adversary
playing zt by l(at, zt). We compare the total loss after n steps to the minimum expert loss,
namely:

n

min
≤ ≤
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1 j K
t=1

where ej is the choice of expert j ∈ {1, 2, ..,K}.
The cumulative regret is then defined as

n n

Rn =
∑

lt(at, zt)− min
∑

lt(ej , zt)
1≤j≤K

t=1 t=1

The feedback at step t can be either full or limited. The full feedback setup means that
the vector f = (l(e1, z

⊤
t), ..., l(eK , zt)) of losses incurred at a pair of adversary’s choice zt and

each bandit ej ∈ {e1, ..., eK} is observed after each step t. Hence, the information available
to the DM after the step t is I = ∪t ′

t ′ {l(a1, zt), ..., l(aK , zt =1 t′)}. The limited feedback means
that the time −t feedback consists of the realised loss l(at, zt) only. Namely, the information
available to the DM is It = {l(a1, z1), ..., l(at, zt)}. An example of the first setup is portfolio
optimization problems, where the loss of all possible portfolios is observed at time t. An
example of the second setup is a path planning problem and dynamic pricing, where the
loss of the chosen decision only is observed. This lecture has limited feedback setup.

The two strategies, defined in the past lectures, were exponential weights, which yield
the regret of order Rn ≤ c

√
n logK and Follow the Perturbed Leader. We would like to

play exponential weights, defined as:
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This decision rule is not feasible, since the loss l(ej , zt) are not part of the feedback if
ej = at. We will estimate it by

l(ej , zt)1I(aˆ t = ej)
l(ej , zt) =

P (at = ej)
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ˆLemma: l(ej , zt) is an unbiased estimator of l(ej , zt)

K I(
P ˆ l(e e =
roof. E k ,zt)1 k et)

at l(ej , zt) =
∑

Pk=1 (a = e ) = l(e , z )
P (at=ej) t k j t

Definition (Exp 3 Algorithm): Let η > 0 be fixed. Define the exponential weights
as

− ∑t−1
η ˆ

(j) exp( l(ej , zs))
p s=1
t+1,j = ∑k

l=1 exp(−η
∑t−1

l̂s=1 (ej , zs))

(Exp3 stands for Exponential weights for Exploration and Exploitation.)
We will show that the regret of Exp3 is bounded by

√
2nK logK. This bound is

√
K

times bigger than the bound on the regret under the full feedback. The
√
K multiplier is

the price of have smaller information set at the time t. The are methods that allow to get
rid of logK term in this expression. On the other hand, it can be shown that

√
2nK is the

optimal regret.
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t W
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∗ ˆwhere inequality is obtained by plugging in IEJ∼pt l(eJ , zt) into the inequality
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Summing from 1 through n, we get

log(Wt+1) ≤
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log( n
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For t = 1, we initialize w1,j = 1, so W1 = K.

Since IE 1 p
J =

Pa ,t

∑K j,t Kj=1 = , the expression above becomes
pt j,t

IE log( n η2Kn
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∑K
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and defining j∗ = argmin1≤j≤K

∑n
lt=1 (ej , zt), we obtain:

K t−1 t−1

log(Wn+1) ≥ log(
∑

exp(−η
∑

l(ej , zs))) = −η
∑

l(ej , zs)
j=1 s=1 s=1

Together:

n n
logK ηKn∑
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∑
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The choice of η :=
√
2 logKnK yields the bound Rn

√
≤ 2K logKn.
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