
18.657: Mathematics of Machine Learning

Lecturer: Alexander Rakhlin Lecture 19
Scribe: Kevin Li Nov. 16, 2015

4. PREDICTION OF INDIVIDUAL SEQUENCES

In this lecture, we will try to predict the next bit given the previous bits in the sequence.
Given completely random bits, it would be impossible to correctly predict more than half
of the bits. However, certain cases including predicting bits generated by a human can
be correct greater than half the time due to the inability of humans to produce truly
random bits. We will show that the existence of a prediction algorithm that can predict
better than a given threshold exists if and only if the threshold satifies certain probabilistic
inequalities. For more information on this topic, you can look at the lecture notes at
http://stat.wharton.upenn.edu/~rakhlin/courses/stat928/stat928_notes.pdf

4.1 The Problem

To state the problem formally, given a sequence y1, . . . , yn, . . . ∈ {−1,+1}, we want to find
a prediction algorithm ŷt = ŷt(y1, . . . , yt 1) that correctly predicts yt as much as possible.−

iid
In order to get a grasp of the problem, we will consider the case where y1, . . . , yn ∼ Ber(p).
It is easy to see that we can get
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by letting ŷt equal majority vote of the first t − 1 bits. Eventually, the bit that occurs
with higher probability will alway

1

s have occurred more times. So the central limit theorem
shows that our loss will approach min{ 1p, 1− p} at the rate of O(√ ).

n

Knowing that the distribution of the bits are iid Bernoulli random variables made the
prediction problem fairly easy. More surprisingly is the fact that we can achieve the same
for any individual sequence.

Claim: There is an algorithm such that the following holds for any sequence y1, . . . , yn, . . ..
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It is clear that no deterministic strategy can achieve this bound. For any deterministic
strategy, we can just choose yt = −ŷt and the predictions would be wrong every time. So
we need a non-deterministic algorithm that chooses q̂t = IE[ŷt] ∈ [−1, 1].

To prove this claim, we will look at a more general problem. Take a fixed horizon n ≥ 1,
and function φ : {±1}n → R. Does
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there exist a randomized prediction strategy such that
for any y1, . . . , yn
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For certain φ such as φ ≡ 0, it is clear that no randomized strategy exists. However for
1φ ≡ , the strategy of randomly predicting the next bit (q̂t = 0) satisfies the inequality.2

Lemma: For a stable φ, the following are equivalent

n
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1
b) IE[φ(ǫ1, . . . , ǫn)] ≥ where ǫ1, . . . , ǫn are Rademacher random variables
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where stable is defined as follows

Definition (Stable Function): A function φ : {±1}n → is stable if

1|φ(. . . , yi, . . .)− φ(. . . ,−yi, . . . )| ≤
n

Proof. (a =
1

⇒ 1b) Suppose IEφ < . Take (y1, . . . , yn) = (ǫ1, . . .
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rsively define V (y1, . . . , yt) such that ∀y1, . . . , yn
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V (y1, . . . , yt 1) = min max
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Looking at the definition, we can see that IE[ 1 n
t=1 {ŷt = yt}] = V ( )

n
∅ − V (y1, . . . , yn).

Now we note that V (y1, . . . , yt) = − t − IE[φ(y1,
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. . , yt, ǫtn +1, . . . , ǫn)] satisfies the recursive2
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The first equality uses the fact that for a, b ∈ {±1}, { 1a = b} = −ab , the second uses the2
fact that yt ∈ {±1}, the third minimizes the entire expression by choosing q̂t so that the
two expressions in the max are equal. Here the fact that φ is stable means q̂t ∈ [−1, 1] and
is the only place where we need φ to be stable.

Therefore we have
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by b).

By choosing φ = min{ȳ, 1− ȳ}+ c√ , this shows there is an algorithm that satisfies our
n

original claim.

4.2 Extensions

4.2.1 Supervised Learning

We can extend the problem to a regression type problem by observing xt and trying to
predict yt. In this case, the objective we are trying to minimize would be

1 1
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∑

(ŷt, yt)− inf
f∈F

,
n

∑

l(f(xt) yt)

It turns out that the best achievable performance in such problems is governed by martin-
gale (or, sequential) analogues of Rademacher averages, covering numbers, combinatorial
dimensions, and so on. Much of Statistical Learning techniques extend to this setting of
online learning. In addition, the minimax/relaxation framework gives a systematic way of
developing new prediction algorithms (in a way similar to the bit prediction problem).

4.2.2 Equivalence to Tail Bounds

We can also obtain probabilistic tail bound on functions φ on hypercube by using part a) of
the earlier lemma. Rearranging part a) of the lemma we get 1− 2φ( 1y1, . . . , yn) ≤ q̂tyt.n
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We can extend the results to higher dimensions. Consider z1, . . . , zn ∈ B2 where B2 is
a ball in a Hilbert space. We can define recursively ŷ0 = 0 and ŷt+1 = ProjB2

(ŷt − 1√ zt).n

Based on the properties of projections, for every ∗ ∈ , we have 1 ∑〈ˆ − ∗ 〉 ≤ 1y B2 yt y , ztn
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Take a martingale difference sequence Z1, . . . , Zn with values in B2. Then
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It can be shown using Von Neumann minimax theorem that

n n

∃(ŷt)∀z1, . . . , zn, y∗ ∈ B2

∑

Wt

√〈ŷt − y∗, zt〉 ≤ sup E c n
MDSWt 1,...,W=1 n

‖
∑
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‖ ≤

where the supremum is over all martingale difference sequences (MDS) with values in B2.
By the previous part, this upper bound is c

√
n. We conclude an interesting equivalence of

(a) deterministic statements that hold for all sequences, (b) tail bounds on the size of a
martingale, and (c) in-expectation bound on this size.

In fact, this connection between probabilistic bounds and existence of prediction strate-
gies for individual sequences is more general and requires further investigation.
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