Recall that in last lecture, we talked about prediction with expert advice. Remember that $l\left(e_{j}, z_{t}\right)$ means the loss of expert j at time t, where z_{t} is one adversary's move. In this lecture, for simplexity we replace the notation z_{t} and denote by z_{t} the loss associated to all experts at time t :

$$
z_{t}=\left(\begin{array}{c}
\ell\left(e_{1}, z_{t}\right) \\
\vdots \\
\ell\left(e_{K}, z_{t}\right)
\end{array}\right),
$$

whereby for $p \in \Delta^{K}, p^{\top} z_{t}=\sum_{j=1}^{K} p_{j} \ell\left(e_{j}, z_{t}\right)$. This gives an alternative definition of $f_{t}(p)$ in last lecture. Actually it is easy to check $f_{t}(p)=p^{\top} z_{t}$, thus we can rewrite the theorem for exponential weighting(EW) strategy as

$$
R_{n} \leq \sum_{t=1}^{n} p_{t}^{\top} z_{t}-\min _{p \in \Delta^{k}} \sum_{t=1}^{n} p^{\top} z_{t} \leq \sqrt{2 n \log K}
$$

where the first inequality is Jensen inequality:

$$
\sum_{t=1}^{n} p_{z}^{\top} z_{t} \geq \sum_{t=1}^{n} \ell\left(p_{z}, z_{t}\right)
$$

We consider EW strategy for bounded convex losses. Without loss of generality, we assume $\ell(p, z) \in[0,1]$, for all $(p, z) \in \Delta^{K} \times \mathcal{Z}$, thus in notation here, we expect $p_{t} \in \Delta^{K}$ and $z_{t} \in[0,1]^{K}$. Indeed if $\ell(p, z) \in[m, M]$ then one can work with a rescaled loss $\bar{\ell}(a, z)=$ $\frac{\ell(a, z)-m}{M-m}$. Note that now we have bounded gradient on p_{t}, since z_{t} is bounded.

2. FOLLOW THE PERTURBED LEADER (FPL)

In this section, we consider a different strategy, called Follow the Perturbed Leader.
At first, we introduce Follow the Leader strategy, and give an example to show that Follow the Leader can be hazardous sometimes. At time t, assume that choose

$$
p_{t}=\underset{p \in \Delta^{K}}{\operatorname{argmin}} \sum_{s=1}^{t-1} p^{\top} z_{s} .
$$

Note that the function to be optimized is linear in p, whereby the optimal solution should be a vertex of the simplex. This method can be viewed as a greedy algorithm, however, it might not be a good strategy.

Consider the following example. Let $K=2, z_{1}=(0, \varepsilon)^{\top}, z_{2}=(0,1)^{\top}, z_{3}=(1,0)^{\top}$, $z_{4}=(0,1)^{\top}$ and so on (alternatively having $(0,1)^{\top}$ and $(1,0)^{\top}$ when $t \geq 2$), where ε is small enough. Then with Following the Leader Strategy, we have that p_{1} is arbitrary and in the best case $p_{1}=(1,0)^{\top}$, and $p_{2}=(1,0)^{\top}, p_{3}=(0,1)^{\top}, p_{4}=(1,0)^{\top}$ and so on (alternatively having $(0,1)^{\top}$ and $(1,0)^{\top}$ when $\left.t \geq 2\right)$.

In the above example, we have

$$
\sum_{t=1}^{n} p_{t}^{\top} z_{t}-\min _{p \in \Delta^{k}} \sum_{t=1}^{n} p^{\top} z_{t} \leq n-1-\frac{n}{2} \leq \frac{n}{2}-1,
$$

which gives raise to linear regret.
Now let's consider FPL. FPL regularizes FL by adding a small amount of noise, which can guarantee square root regret under oblivious adversary situation.

Algorithm 1 Follow the Perturbed Leader (FPL)
Input: Let ξ be a random variables uniformly drawn on $\left[0, \frac{1}{\eta}\right]^{K}$.
for $t=1$ to n do

$$
p_{t}=\underset{p \in \Delta^{K}}{\operatorname{argmin}} \sum_{s=1}^{t-1}\left(p^{\top} z_{s}+\xi\right) .
$$

end for

We analyze this strategy in oblivious adversaries, which means the sequence z_{t} is chosen ahead of time, rather than adaptively given. The following theorem gives a bound for regret of FPL:

Theorem: FPL with $\eta=\frac{1}{\sqrt{k n}}$ yields expected regret:

$$
\mathbb{E}_{\xi}\left[R_{n}\right] \leq 2 \sqrt{2 n K}
$$

Before proving the theorem, we introduce the so-called Be-The-Leader Lemma at first.

Lemma: (Be-The-Leader)

For all loss function $\ell(p, z)$, let

$$
p_{t}^{*}=\arg \min _{p \in \Delta^{K}} \sum_{s=1}^{t} \ell\left(p, z_{s}\right),
$$

then we have

$$
\sum_{t=1}^{n} \ell\left(p_{t}^{*}, z_{t}\right) \leq \sum_{t=1}^{n} \ell\left(p_{n}^{*}, z_{t}\right)
$$

Proof. The proof goes by induction on n. For $n=1$, it is clearly true. From n to $n+1$, it
follows from:

$$
\begin{aligned}
\sum_{t=1}^{n+1} \ell\left(p_{t}^{*}, z_{t}\right) & =\sum_{i=1}^{n} \ell\left(p_{t}^{*}, z_{t}\right)+\ell\left(p_{n+1}^{*}, z_{n+1}\right) \\
& \leq \sum_{i=1}^{n} \ell\left(p_{n}^{*}, z_{t}\right)+\ell\left(p_{n+1}^{*}, z_{n+1}\right) \\
& \leq \sum_{i=1}^{n} \ell\left(p_{n+1}^{*}, z_{t}\right)+\ell\left(p_{n+1}^{*}, z_{n+1}\right),
\end{aligned}
$$

where the first inequality uses induction and the second inequality follows from the definition of p_{n}^{*}.

Proof of Theorem. Define

$$
q_{t}=\underset{p \in \Delta^{K}}{\operatorname{argmin}} p^{\top}\left(\xi+\sum_{s=1}^{t} z_{s}\right) .
$$

Using the Be-The-Leader Lemma with

$$
\ell\left(p, z_{t}\right)= \begin{cases}p^{T}\left(\xi+z_{1}\right) & \text { if } t=1 \\ p^{T} z_{t} & \text { if } t>1\end{cases}
$$

we have

$$
q_{1}^{\top} \xi+\sum_{t=1}^{n} q_{t}^{\top} z_{t} \leq \min _{q \in \Delta^{K}} q^{\top}\left(\xi+\sum_{t=1}^{n} z_{t}\right)
$$

whereby for any $q \in \Delta^{K}$,

$$
\sum_{i=1}^{n}\left(q_{t}^{\top} z_{t}-q^{\top} z_{t}\right) \leq\left(q^{\top}-q_{1}^{\top}\right) \xi \leq\left\|q-q_{1}\right\|_{1}\|\xi\|_{\infty} \leq \frac{2}{\eta},
$$

where the second inequality uses Hölder's inequality and the third inequality is from the fact that q and q_{1} are on the simplex and ξ is in the box.

Now let

$$
q_{t}=\arg \min _{p \in \Delta^{K}} p^{\top}\left(\xi+z_{t}+\sum_{s=1}^{t} z_{s}\right)
$$

and

$$
p_{t}=\arg \min _{p \in \Delta^{K}} p^{\top}\left(\xi+0+\sum_{s=1}^{t} z_{s}\right) .
$$

Therefore,

$$
\begin{align*}
\mathbb{E}\left[R_{n}\right] & \leq \sum_{i=1}^{n} p_{t}^{\top} z_{t}-\min _{p \in \Delta^{k}} \sum_{i=1}^{n} p^{\top} z_{t} \\
& \leq \sum_{i=1}^{n}\left(q_{t}^{\top} z_{t}-p^{* T} z_{t}\right)+\sum_{i=1}^{n} \mathbb{E}\left[\left(p_{t}-q_{t}\right)^{\top} z_{t}\right] \\
& \leq \frac{2}{\eta}+\sum_{i=1}^{n} \mathbb{E}\left[\left(p_{t}-q_{t}\right)^{\top} z_{t}\right], \tag{2.1}
\end{align*}
$$

where $p^{*}=\arg \min _{p \in \Delta^{K}} \sum_{t=1}^{n} p^{\top} z_{t}$.
Now let

$$
h(\xi)=z_{t}^{\top}\left(\arg \min _{p \in \Delta^{K}} p^{\top}\left[\xi+\sum_{s=1}^{t-1} z_{s}\right]\right)
$$

then we have a easy observation that

$$
\mathbb{E}\left[z_{t}^{\top}\left(p_{t}-q_{t}\right)\right]=\mathbb{E}[h(\xi)]-\mathbb{E}\left[h\left(\xi+z_{t}\right)\right] .
$$

Hence,

$$
\begin{align*}
\mathbb{E}\left[z_{t}^{\top}\left(p_{t}-q_{t}\right)\right] & =\eta^{K} \int_{\xi \in\left[0, \frac{1}{\eta}\right]^{K}} h(\xi) d \xi-\eta^{K} \int_{\xi \in z_{t}+\left[0, \frac{1}{\eta}\right]^{K}} h(\xi) d \xi \\
& \leq \eta^{K} \int_{\xi \in\left[0, \frac{1}{\eta}\right]^{K} \backslash\left\{z_{t}+\left[0, \frac{1}{\eta}\right]^{K}\right\}} h(\xi) d \xi \\
& \leq \eta^{K} \int_{\xi \in\left[0, \frac{1}{\eta}\right]^{K} \backslash\left\{z_{t}+\left[0, \frac{1}{\eta}\right]^{K}\right\}} 1 d \xi \\
& =\mathbb{P}\left(\exists i \in[K], \xi(i) \leq z_{t}(i)\right) \\
& \leq \sum_{i=1}^{K} \mathbb{P}\left(\operatorname{Unif}\left(\left[0, \frac{1}{\eta}\right]\right) \leq z_{t}(i)\right) \\
& \leq \eta K z_{t}(i) \leq \eta K \tag{2.2}
\end{align*}
$$

where the first inequality is from the fact that $h(\xi) \geq 0$, the second inequality uses $h(\xi) \leq 1$, the second equation is just geometry and the last inequality is due to $z_{t}(i) \leq 1$.

Combining (2.1) and (2.2) together, we have

$$
\mathbb{E}\left[R_{n}\right] \leq \frac{2}{\eta}+\eta K n .
$$

In particular, with $\eta=\sqrt{\frac{2}{K n}}$, we have

$$
\mathbb{E}\left[R_{n}\right] \leq 2 \sqrt{2 K n}
$$

which completes the proof.

MIT OpenCourseWare
http://ocw.mit.edu

18.657 Mathematics of Machine Learning

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

