
18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 15
Scribe: Zach Izzo Oct. 27, 2015

Part III

Online Learning

It is often the case that we will be asked to make a sequence of predictions, rather
than just one prediction given a large number of data points. In particular, this situa-
tion will arise whenever we need to perform online classification: at time t, we have
(X1, Y1), . . . , (Xt−1, Yt−1) iid random variables, and given Xt, we are asked to predict
Yt ∈ {0, 1}. Consider the following examples.

Online Shortest Path: We have a graph G = (V,E) with two distinguished vertices
s and t, and we wish to find the shortest path from s to t. However, the edge weights
E1, . . . , Et change with time t. Our observations after time t may be all of the edge weights
E1, . . . , Et; or our observations may only be the weights of edges through which our path
traverses; or our observation may only be the sum of the weights of the edges we’ve traversed.

Dynamic Pricing: We have a sequence of customers, each of which places a value vt
on some product. Our goal is to set a price pt for the tth customer, and our reward for
doing so is pt if pt ≤ vt (in which case the customer buys the product at our price) or 0
otherwise (in which case the customer chooses not to buy the product). Our observations
after time t may be v1, . . . , vt; or, perhaps more realistically, our observations may only be
1I(p1 < v1), . . . , 1I(pt < vt). (In this case, we only know whether or not the customer bought
the product.)

Sequential Investment: Given N assets, a portfolio is ω ∈ ∆N = {x ∈ IRn : xi ≥
0,
∑N xi=1 i = 1}. (ω tells what percentage of our funds to invest in each stock. We could

also allow for negative weights, which would correspond to shorting a stock.) At each time
t, we wish to create a portfolio ωt ∈ ∆N to maximize ωT

t zt, where zt ∈ IRN is a random
variable which specifies the return of each asset at time t.

There are two general modelling approaches we can take: statistical or adversarial.
Statistical methods typically require that the observations are iid, and that we can learn
something about future points from past data. For example, in the dynamic pricing example,
we could assume vt ∼ N(v, 1). Another example is the Markowitz model for the sequential
investment example, in which we assume that log(zt) ∼ N (µ,Σ).

In this lecture, we will focus on adversarial models. We assume that zt can be any
bounded sequence of numbers, and we will compare our predictions to the performance of
some benchmark. In these types of models, one can imagine that we are playing a game
against an opponent, and we are trying to minimize our losses regardless of the moves he
plays. In this setting, we will frequently use optimization techniques such as mirror descent,
as well as approaches from game theory and information theory.

1

1. PREDICTION WITH EXPERT ADVICE

1.1 Cumulative Regret

Let A be a convex set of actions we can take. For example, in the sequential investment
example, A = ∆N . If our options are discrete–for instance, choosing edges in a graph–then
think of A as the convex hull of these options, and we can play one of the choices randomly
according to some distribution. We will denote our adversary’s moves by Z. At time t,
we simultaneously reveal at ∈ A and zt ∈ Z. Denote by ℓ(at, zt) the loss associated to the
player/decision maker taking action at and his adversary playing zt.

In the general case,
∑n

t ℓ=1 (at, zt) can be arbitrarily large. Therefore, rather than looking
at the absolute loss for a series of n steps, we will compare our loss to the loss of a benchmark
called an expert. An expert is simply some vector b ∈ An, b = (b1, . . . , bt, . . . , b

T
n) . If we

choose K experts b(1), . . . , b(K), then our benchmark value will be the minimum cumulative
loss amongst of all the experts:

n
(j)

benchmark = min
≤j≤K

∑

ℓ(bt , zt).
1

t=1

The cumulative regret is then defined as

n n

Rn =
∑

(j)
ℓ(at, zt)− min ℓ(bt , zt).

1≤j≤K
t=1

∑

t=1

At time t, we have access to the following information:

1. All of our previous moves, i.e. a1, . . . , at−1,

2. all of our adversary’s previous moves, i.e. z1, . . . , zt−1, and

3. All of the experts’ strategies, i.e. b(1), . . . , b(K).

Naively, one might try a strategy which chooses a = b∗ ∗
t t , where b is the expert which

has incurred minimal total loss for times 1, . . . , t− 1. Unfortunately, this strategy is easily
exploitable by the adversary: he can simply choose an action which maximizes the loss for
that move at each step. To modify our approach, we will instead take a convex combination
of the experts’ suggested moves, weighting each according to the performance of that expert
thus far. To that end, we will replace ℓ(at, zt) by ℓ(p, (bt, zt)), where p ∈ ∆K denotes a

(1) (K)
convex combination, bt = (bt , . . . , bt)T ∈ AK is the vector of the experts’ moves at time
t, and zt ∈ Z is our adversary’s move. Then

n n

Rn =
∑

ℓ(pt, zt)− min ℓ(ej , zt)
1≤j≤K

t=1

∑

t=1

where ej is the vector whose jth entry is 1 and the rest of the entries are 0. Since we are
restricting ourselves to convex combinations of the experts’ moves, we can write A = ∆K .
We can now reduce our goal to an optimization problem:

K n

min
∈∆K

∑

θj
θ

j=1

∑

ℓ(ej , zt).
t=1

2

From here, one option would be to use a projected gradient descent type algorithm: we
define

qt+1 = pt − η(ℓ(e T
1, zt), . . . , ℓ(eK , zT))

K

and then p ∆
t+1 = π (pt) to be the projection of qt+1 onto the simplex.

1.2 Exponential Weights

Suppose we instead use stochastic mirror descent with Φ = negative entropy. Then

qt
qt+1,j = pt+1,j exp(−ηℓ(ej , zt)), pt+1,j = ,

∑K
l q=1 t+1,l

where we have defined

K
(

wt,j
pt = ej , exp

K w
j=1 l=1 ,l

)

wt,j =
t

(

t−1
∑

−η
∑

ℓ(ej , zs)
s=1

)

.

This process looks at the los

∑

s from each expert and downweights it exponentially according
to the fraction of total loss incurred. For this reason, this method is called an exponential
weighting (EW) strategy.

Recall the definition of the cumulative regret Rn:

n n

Rn =
∑

ℓ(pt, zt)− min
1≤j≤K

t=1

∑

ℓ(ej , zt).
t=1

Then we have the following theorem.

Theorem: Assume ℓ(·, z) is convex for all z ∈ Z and that ℓ(p, z) ∈ [0, 1] for all p ∈
∆K , z ∈ Z. Then the EW strategy has regret

logK ηn
Rn ≤ + .

η 2

In particular, for η =
√

2 logK ,
n

Rn ≤
√

2n logK.

Proof. We will recycle much of the mirror descent proof. Define

K

ft(p) =
∑

pjℓ(ej , zt).
j=1

Denote ‖ · ‖ := | · |1. Then

n n
1 ∑ η 1 ‖g ‖2t logK

ft((∗
pt)− f ∗

t) ≤ n

∑

t=1p + ,
n 2 ηn

t=1

3

where gt ∈ ∂ft(pt) and ‖ · ‖∗ is the dual norm (in this case ‖ · ‖∗ = | · |∞). The 2 in the
denominator of the first term of this sum comes from setting α = 1 in the mirror descent
proof. Now,

gt ∈ ∂ft(pt) ⇒ gt = (ℓ(e1, zt), . . . , ℓ(e
T

K , zt)) .

Furthermore, since ℓ(p, z) ∈ [0, 1], we have ‖gt‖∗ = |gt|∞ ≤ 1 for all t. Thus

nη 1
n

∑

t=1 ‖gt‖
2
∗ logK η logK
+ ≤ + .

2 nη 2 ηn

Substituting for ft yields

n K K n
∑∑ ηn logK

pt,jℓ(ej , zt)− min
∑

pjℓ(ej , zt) ≤ + .
p∈∆K 2 η

t=1 j=1 j=1

∑

t=1

Note that the boxed term is actually min1≤j≤K

∑n ℓt=1 (ej , zt). Furthermore, applying
Jensen’s to the unboxed term gives

n K n
∑∑

pt,jℓ(ej , zt) ≥
∑

ℓ(pt, zt).
t=1 j=1 t=1

Substituting these expressions then yields

ηn logK
Rn ≤ + .

2 η

We optimize over η to reach the desired conclusion.

We now offer a different proof of the same theorem which will give us the optimal
constant in the error bound. Define

(

t−1
)

K K
∑ ∑

∑

wt,jej=1 j
wt,j = exp −η ℓ(ej , zs) , Wt = wt,j , pt = .

Wt
s=1 j=1

For t = 1, we initialize w1,j = 1, so W1 = K. It should be noted that the starting values for
w1,j are uniform, so we’re starting at the correct point (i.e. maximal entropy) for mirrored
descent. Now we have

(
K exp − t−1η ℓ , zW j=1 s=1 (ej s) exp(−ηℓ(ej , zt))

t+1
log g

W

∑

K tt

)

= lo

(

·
∑ −1

l ℓ e= e

∑

xp
(

−η1

∑

j , z=1

)

(l s)

= log (IEJ∼pt [exp(−ηℓ(eJ , zt))])

)

1 2

Hoeffding’s lemma ⇒ ≤ log
(

η IEe e−η J J8
ℓ(e ,zt)

η2

)

= − ηIEJℓ(eJ , zt)
8
η2 η2

Jensen’s ⇒ ≤ − ηℓ(IEJeJ , zt) = − ηℓ(pt, zt)
8 8

4

since IEJej =
∑K pj=1 t,jej . If we sum over t, the sum telescopes. Since W1 = K, we are left

with
n

nη2
log(Wn+1)− log(K) ≤ − η

∑

ℓ(pt, zt).
8

t=1

We have
K n

log(Wn+1) = log

∑

exp

(

−η
∑

ℓ(ej , zs)
j=1 s=1

)

,

so setting nj∗ = argmin1≤j≤K

∑

ℓ(e

t=1 j , zt), we obtain

n n

log(Wn+1) ≥ log

(

exp

(

−η

))

∑

ℓ(ej∗, zs) = −η
∑

ℓ(ej∗ , zt).
s=1 t=1

Rearranging, we have

n n
∑ ηn logK

ℓ(pt, zt)− ℓ

t=

∑

(ej∗ , zt) ≤ + .
8 η

1 t=1

Finally, we optimize over η to arrive at

η =

√

8 logK o
Rn ≤

n

√

n l gK
⇒ .

2

The improved constant comes from the assumption that our loss lies in an interval of size
1 (namely [0, 1]) rather than in an interval of size 2 (namely [−1, 1]).

5

MIT OpenCourseWare
http://ocw.mit.edu

18.657 Mathematics of Machine Learning
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

