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In this lecture we will wrap up the study of optimization techniques with stochastic
optimization. The tools that we are going to develop will turn out to be very efficient in
minimizing the ϕ-risk when we can bound the noise on the gradient.

3. STOCHASTIC OPTIMIZATION

3.1 Stochastic convex optimization

We are considering random functions x 7→ ℓ(x,Z) where x is the optimization parameter and
Z a random variable. Let PZ be the distribution of Z and let us assume that x 7→ ℓ(x,Z) is
convex PZ a.s. In particular, IE[ℓ(x,Z)] will also be convex. The goal of stochastic convex
optimization is to approach minx IE[ℓ(x,Z)] when is convex. For our purposes, will∈C C C
be a deterministic convex set. However, stochastic convex optimization can be defined more
broadly. The constraint can be itself stochastic :

C = {x, IE[g(x,Z)] ≤ 0}, g convex PZ a.s.

C = {x, IP[g(x,Z) ≤ 0] ≥ 1− ε}, “chance constraint”

The second constraint is not convex a priori but remedies are possible (see [NS06, Nem12]).
In the following, we will stick to the case where X is deterministic. A few optimization
problems we tackled can be interpreted in this new framework.

3.1.1 Examples

Boosting. Recall that the goal in Boosting is to minimize the ϕ-risk:

min IE[ϕ( f
∈Λ

−Y α(X))] ,
α

where Λ is the simplex of IRd. Define Z = (X,Y ) and the random function ℓ(α,Z) =
ϕ(−Y fα(X)), convex PZ a.s.

Linear regression. Here the goal is the minimize the ℓ2 risk:

min IE[(Y − f 2
α(X)) ] .

α∈IRd

Define Z = (X,Y ) and the random function ℓ(α,Z) = (Y − fα(X))2, convex PZ a.s.

Maximum likelihood. We consider samples Z1, . . . , Zn iid with density pθ, θ ∈ Θ. For
instance, Z N (θ, 1). The likelihood functions associated to this set of samples is θ∼ 7→
∏n

=1 pθ(Zi). Let p
∗(Z) denote the true density of Zi (it does not have to be of the form pθ

for some θ ∈ Θ. Then

n
1 ∏

∫

p∗(z)
IE[log pθ(Zi)] = − log( )p∗(z)dz + C =

n pθ(z)
i=1

−KL(p∗, pθ) + C
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where C is a constant in θ. Hence maximizing the expected log-likelihood is equivalent to
minimizing the expected Kullback-Leibler divergence:

n

maxIE[log
∏

pθ(Zi)]
θ

i=1

⇐⇒ KL(p∗, pθ)

External randomization. Assume that we want to minimize a function of the form

1
f(x) =

n
∑

fi(x) ,
n

i=1

where the functions f1, . . . , fn are convex. As we have seen, this arises a lot in empirical
risk minimization. In this case, we treat this problem as deterministic problem but inject
artificial randomness as follows. Let I be a random variable uniformly distributed on
[n] =: {1, . . . , n}. We have the representation f(x) = IE[fI(x)], which falls into the context
of stochastic convex optimization with Z = I and ℓ(x, I) = fI(x).

Important Remark: There is a key difference between the case where we assume that
we are given independent random variables and the case where we generate artificial ran-
domness. Let us illustrate this difference for Boosting. We are given (X1, Y1), . . . , (Xn, Yn)
i.i.d from some unknown distribution. In the first example, our aim is to minimize
IE[ϕ(−Y fα(X))] based on these n observations and we will that the stochastic gradient
allows to do that by take one pair (Xi, Yi) in each iteration. In particular, we can use
each pair at most once. We say that we do one pass on the data.

We could also leverage our statistical analysis of the empirical risk minimizer from
previous lectures and try to minimize the empirical ϕ-risk

1
R̂n,ϕ(fα) =

n
∑

ϕ( α

i=1

−Yif (Xi))
n

by generating k independent random variables I1, . . . , Ik uniform over [n] and run the
stochastic gradient descent to us one random variable Ij in each iteration. The difference
here is that k can be arbitrary large, regardless of the number n of observations (we make
multiple passes on the data). However, minimizing IEI [ϕ(−YIfα(XI))|X1, Y1, . . . ,Xn, Yn]
will perform no better than the empirical risk minimizer whose statistical performance
is limited by the number n of observations.

3.2 Stochastic gradient descent

If the distribution of Z was known, then the function x 7→ IE[ℓ(x,Z)] would be known and
we could apply gradient descent, projected gradient descent or any other optimization tool
seen before in the deterministic setup. However this is not the case in reality where the
true distribution PZ is unknown and we are only given the samples Z1, . . . , Zn and the
random function ℓ(x,Z). In what follows, we denote by ∂ℓ(x,Z) the set of subgradients of
the function y 7→ ℓ(y, Z) at point x.
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Algorithm 1 Stochastic Gradient Descent algorithm

Input: x1 ∈ C, positive sequence {ηs}s 1, independent random variables Z , . . . , Z≥ 1 k

with distribution PZ .
for s = 1 to k − 1 do

ys+1 = xs − ηsg̃s , g̃s ∈ ∂ℓ(xs, Zs)
xs+1 = π (yC s+1)

end for

1
return x̄k =

k

k

∑

xs
s=1

Note the difference here with the deterministic gradient descent which returns either
x̄k or x◦k = argmin f(x). In the stochastic framework, the function f(x) = IE[ℓ(x, ξ)] is

x1,...,xn

typically unknown and x̊k cannot be computed.

Theorem: Let C be a closed convex subset of IRd such that diam(C) ≤ R. Assume that
he convex function f(x) = IE[ℓ(x,Z)] attains its minimum on C at x∗ ∈ IRd. Assume
that ℓ(x,Z) is convex PZ a.s. and that IE‖g̃‖2 ≤ L2 for all g̃ ∈ ∂ℓ(x,Z) for all x. Then
if ηs ≡ η = R

L
√ ,
k

LR
IE[f(x̄k)]− f(x∗) ≤ √

k

Proof.

f xs f x gs xs x

= IE[g̃s
⊤(xs − x∗)|xs]

1
= IE[(ys+1 xs)

⊤(xs x∗) xs]
η

− − |
1

= IE[‖x 2 2
s − y 2

s+1‖ +
η

‖xs − x∗
2

‖ − ‖ys+1 − x∗‖ |xs]
1≤ (η2IE[‖g̃s‖2|xs] + IE[‖x 2

s − x∗‖ |xs]− IE[‖xs+1 − x∗ x
η

‖2
2

| s]

Taking expectations and summing over s we get

k
1 ∑ ηL2 R2

f(xs) (
s=1

− f x∗)
k

≤ + .
2 2ηk

Using Jensen’s inequality and chosing η = R

L
√ , we get
k

LR
IE[f(x̄k)]− f(x∗) ≤ √

k
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3.3 Stochastic Mirror Descent

We can also extend the Mirror Descent to a stochastic version as follows.

Algorithm 2 Mirror Descent algorithm

Input: x1 ∈ argmin Φ(x), ζ : d
R → d

R such that ζ(x) = ∇Φ(x), independentC∩D
random variables Z1, . . . , Zk with distribution PZ .
for s = 1, · · · , k do

ζ(ys+1) = ζ(xs)− ηg̃s for g̃s ∈ ∂ℓ(xs, Zs)
x Φ
s+1 = Π (yC s+1)

end for

return x = 1 k
k

∑

s=1 xs

Theorem: Assume that Φ is α-strongly convex on C ∩ D w.r.t. ‖ · ‖ and

R2 = sup Φ(x) Φ x)
x

− min (
∈C∩D x∈C∩D

take x1 = argminx Φ(x) (assume that it exists). Then, Stochastic Mirror Descent∈C∩D

with η = R
L

√

2α x
R

outputs ¯k, such that

IE[f(x̄k)]− f(x∗) ≤ RL

√

2
.

αk

Proof. We essentially reproduce the proof for the Mirror Descent algorithm.
Take x♯ ∈ C ∩ D. We have

f(xs s s

IE[g̃s
⊤(xs − x∗)|xs]
1

= IE[(ζ(xs)
η

− ζ(ys+1))
⊤ (xs − x♯)|xs]

1
= IE[(∇Φ(xs)−∇Φ(ys+1))

⊤ (xs
η

− x♯)|xs]
1

= IE
[

D ♯
Φ(xs, ys+1) +DΦ(x

♯, xs)−DΦ(x , ys+1)
η

∣

∣xs

]

1≤ IE
[

DΦ(x
♯

s, ys+1) +DΦ(x , xs)−DΦ(x
♯, xs+1) x

η

∣

∣

s

]

η≤
2
IE[‖g̃s‖2

1|xs] + IE
2α ∗ η

[

DΦ(x
♯, xs)−DΦ(x

♯, xs+1)
∣

∣xs

]

)− f(x♯) ≤ g⊤(x − x♯)
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where the last inequality comes from

DΦ(xs, ys+1) = Φ(xs)− Φ(ys+1)−∇Φ(ys+1)
⊤(xs − ys+1)

α≤ [∇Φ(x 2
s)−∇Φ(ys+1)]

⊤ (xs − ys+1)−
2
‖ys+1 − xs‖

α≤ η‖g̃s‖ x y y x 2
∗‖ s − s+1‖ −

2
‖ s+1 − s‖

η2‖g̃≤ s‖2∗ .
2α

Summing and taking expectations, we get

k
1 ∑ ηL2 DΦ(x

♯, x1)
[f(x ♯

s) ]
s=1

≤ +
k

− f(x ) . (3.1)
2α kη

We conclude as in the previous lecture.

3.4 Stochastic coordinate descent

Let f be a convex L-Lipschitz and differentiable function on IRd. Let us denote by ∇if the
partial derivative of f in the direction ei. One drawback of the Gradient Descent Algorithm
is that at each step one has to update every coordinate ∇if of the gradient. The idea of
the stochastic coordinate descent is to pick at each step a direction ej uniformly and to
choose that ej to be the direction of the descent at that step. More precisely, of I is drawn
uniformly on [d], then IE[d∇If(x)eI ] = ∇f(x). Therefore, the vector d∇If(x)eI that has
only one nonzero coordinate is an unbiased estimate of the gradient ∇f(x). We can use
this estimate to perform stochastic gradient descent.

Algorithm 3 Stochastic Coordinate Descent algorithm

Input: x1 ∈ C, positive sequence {ηs}s 1, independent random variables I , . . . , I≥ 1 k

uniform over [d].
for s = 1 to k − 1 do

ys+1 = xs − ηsd∇If(x)eI , g̃s ∈ ∂ℓ(xs, Zs)
xs+1 = π (ys+1)C

end for
k

1
return x̄k =

k

∑

xs
s=1

If we apply Stochastic Gradient Descent to this problem for η = R
√

2 , we directly
L dk

obtain
2d

IE[f(x̄k)]− f(x∗) ≤ RL

√

k

We are in a trade-off situation where the updates are much easier to implement but where
we need more steps to reach the same precision as the gradient descent alogrithm.
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