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2. CONVEX OPTIMIZATION FOR MACHINE LEARNING

In this lecture, we will cover the basics of convex optimization as it applies to machine
learning. There is much more to this topic than will be covered in this class so you may be
interested in the following books.

Convex Optimization by Boyd and Vandenberghe
Lecture notes on Convex Optimization by Nesterov
Convex Optimization: Algorithms and Complexity by Bubeck
Online Convex Optimization by Hazan

The last two are drafts and can be obtained online.

2.1 Convex Problems

A convex problem is an optimization problem of the form min f(x) where f and are
x∈C

C
convex. First, we will debunk the idea that convex problems are easy by showing that
virtually all optimization problems can be written as a convex problem. We can rewrite an
optimization problem as follows.

min f(x) , min t , min t
X∈X t≥f(x),x∈X (x,t)∈epi(f)

where the epigraph of a function is defined by

epi(f) = f(x, t) 2 X � IR : t � f(x)g

⇔ ⇔

{ ∈ × ≥ }

Figure 1: An example of an epigraph.
Source: https://en.wikipedia.org/wiki/Epigraph_(mathematics)
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Now we observe that for linear functions,

min c>x = min c>x
x∈D x∈conv(D)

where the convex hull is defined

N N

conv(D) = fy : 9N 2 Z+, x1, . . . , xN 2 D,αi � 0,
∑

αi = 1, y =
i=1

∑
αixi

i=1

g

To prove this, we know that the left side is a least as big as the right side since D � conv(D).
For the other direction, we have

N

min c>x = min min min c> αixi
x∈conv(D) N x1,...,xN∈D α1,...,αN

N

∑
i=1

= min min min αic
>xi min c>x

N x1,...,xN∈D α1,...,αN

∑
=1

�
x∈D

i

N

� min min min αi min c>x
N x1,...,xN∈D α1,...,αN

∑
x

i=1
∈D

= min c>x
x∈D

Therefore we have
min f(x) min
x∈X

, t
(x,t)∈conv(epi(f))

which is a convex problem.
Why do we want convexity? As we will show, convexity allows us to infer global infor-

mation from local information. First, we must define the notion of subgradient.

Definition (Subgradient): Let C � IRd, f : C ! IR. A vector g 2 IRd is called a
subgradient of f at x 2 C if

f(x)� f(y) � g>(x� y) 8y 2 C .

The set of such vectors g is denoted by ∂f(x).

Subgradients essentially correspond to gradients but unlike gradients, they always ex-
ist for convex functions, even when they are not differentiable as illustrated by the next
theorem.

Theorem: If f : C ! IR is convex, then for all x, ∂f(x) = ;. In addition, if f is
differentiable at x, then ∂f(x) = frf(x)g.

Proof. Omitted. Requires separating hyperplanes for convex sets.
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Theorem: Let f, C be convex. If x is a local minimum of f on C, then it is also global
minimum. Furthermore this happens if and only if 0 2 ∂f(x).

Proof. 0 2 ∂f(x) if and only if f(x) − f(y) � 0 for all y 2 C. This is clearly equivalent to
x being a global minimizer.

Next assume( x is a local minimum. Then for all y 2 C there exists ε small enough such

that f(x) � f (1− ε)x+ εy
)
� (1− ε)f(x) + εf(y) =) f(x) � f(y) for all y 2 C.

Not only do we know that local minimums are global minimums, looking at the subgra-
dient also tells us where the minimum can be. If g>(x − y) < 0 then f(x) < f(y). This
means f(y) cannot possibly be a minimum so we can narrow our search to ys such that
g>(x− y). In one dimension, this corresponds to the half line fy 2 IR : y � xg if g > 0 and
the half line fy 2 IR : y � xg if g < 0 . This concept leads to the idea of gradient descent.

2.2 Gradient Descent

y � x and f differentiable the first order Taylor expansion of f at x yields f(y) � f(x) +
g>(y − x). This means that

min f(x+ εµ̂) � min f(x) + g>(εµ̂)
|µ̂|2=1

gwhich is minimized at µ̂ = − . Therefore to minimizes the linear approximation of f at|g|2
x, one should move in direction opposite to the gradient.

Gradient descent is an algorithm that produces a sequence of points fxjgj≥1 such that
(hopefully) f(xj+1) < f(xj).

∈

∈ ≤ ∈

∈
≤ ≤ ⇒ ≤ ∈

{ ∈ ≤ }
{ ∈ ≥ }

≈ ≈

≈

{ }

Figure 2: Example where the subgradient of x1 is a singleton and and the subgradient of
x2 contains multiple elements.

Source: https://optimization.mccormick.northwestern.edu/index.php/
Subgradient_optimization
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Algorithm 1 Gradient Descent algorithm

Input: x1 2 C, positive sequence fηsgs≥1
for s = 1 to k � 1 do
xs+1 = xs � ηsgs , gs 2 ∂f(xs)

end for
k

1
return Either x̄ =

k

∑
xs or x◦

s=1

2 argmin f(x)
x∈{x1,...,xk}

Theorem: Let f be a convex L-Lipschitz function on IRd such that x∗ 2 argminIRd f(x)
exists. Assume that jx1 � x∗j2 � R. Then if η R

s = η =
L
√ for all s
k

� 1, then

k
1 LR

f(
k

∑
xs)

s=1

� f(x∗) � p
k

and
LR

min f(xs)
1 s k

� f(x∗) � p
≤ ≤ k

Proof. Using the fact that gs = 1 (x 2
s+1 +η �xs) and the equality 2a>b = kak kbk2�ka�bk2,

1
f(xs)� f(x∗) � gs>(xs � x∗) = (xs

η
� xs+1)

>(xs � x∗)

1
= x 2

s xs+1 + x x∗ 2 x 2
s s+1 x∗

2η

[
k � k k � k � k � k

η 1

]
=

2
kg 2
sk + (δ2

2η s � δ2s+1)

where we have defined δs = kxs � x∗k. Using the Lipschitz condition

η 1
f(xs)� f(x∗) � L2 + (δ2

2 2η s � δ2s+1)

Taking the average from 1, to k we get

k
1 ∑ η η 1 R2

f(xs) f(x∗) � L2 1 η� + (δ2
k 1 � δ2k s )

η
� L2

+1 + δ2
2 2 2kη 1 � L2 +

2 2 2kη
s=1

Taking η = R
L
√ to minimize the expression, we obtain
k

k
1

k

∑ LR
f(xs)

s=1

� f(x∗) � p
k

k

Noticing that the left-hand side of the inequality is larger than both f(
∑

xs) � f(x∗) by
s=1

Jensen’s inequality and min f(xs)
1≤s≤k

� f(x∗) respectively, completes the proof.
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One flaw with this theorem is that the step size depends on k. We would rather have
step sizes ηs that does not depend on k so the inequalities hold for all k. With the new step
sizes,

∑k ∑k k k
η2s 2 1

[
∑ R2

ηs f(x )� f x∗)] � L δ2
L

s ( + (δ2s � s+1) η2 +
2 2 s 2 2

s=1 s=1 s=1

�
(∑
s=1

)
After dividing by

∑k∑ s=1 ηs, we∑would like the right-hand side to approach 0. For this to
η2happen we need ∑ s ! 0 and ηs !1. One candidate for the step size is ηs = G
ηs

√ since
s

k

then
∑ k

η2s � c1G2 log(k) and ηs c2G
p
k. So we get

s=1 s

∑
=1

�

(∑k c1
ηs

) k−1∑ GL log k R2

ηs[f(xs) f(x∗)]
2c2
p +
k 2c2G

p
ks=1 s=1

� �

Choosing G appropriately, the right-hand side approaches 0 at the rate of LR log k . Notice
p k

that we get an extra factor of log k. However, if we look at the sum from k/

√
2 to k instead

k

of 1 to k,
∑ k

η2s � c′1G2 and
∑

ηs � c′2G
p
k. Now we have

= k s=1s
2

k k−1 cLR
min f(xs) f(x∗) min f(xs) f(x∗) ηs ηs[f(xs) f(x∗)]
1≤s≤k

� �
k s k
2

� �
(∑

k

) ∑
k

� � p
≤ ≤ k

s= s=
2 2

which is the same rate as in the theorem and the step sizes are independent of k.

Important Remark: Note this rate only holds if we can ensure that jxk/2 � x∗j2 � R
since we have replaced x1 by xk/2 in the telescoping sum. In general, this is not true for
gradient descent, but it will be true for projected gradient descent in the next lecture.

One final remark is that the dimension d does not appear anywhere in the proof. How-
ever, the dimension does have an effect because for larger dimensions, the conditions f is
L-Lipschitz and jx1 � x∗j2 � R are stronger conditions in higher dimensions.
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