18.657 PS 3 SOLUTIONS

1. Problem 1

(1) Symmetry is clear. Let K_{1} and K_{2} be the PSD Gram matrices of k_{1} and k_{2}, respectively. Then the Gram matrix K of k is simply the Hadamard (or Schur) product $K_{1} \bullet K_{2}$; we wish to see that this is PSD.

The Kronecker product $K_{1} \otimes K_{2}$ is PSD: its eigenvalues are simply the pair products of an eigenvalue of K_{1} with an eigenvalue from K_{2}, as is easily seen from the identity

$$
\left(K_{1} \otimes K_{2}\right)(v \otimes w)=\left(K_{1} v\right) \otimes\left(K_{2} w\right)
$$

when v and w are eigenvectors of K_{1} and K_{2}, respectively. Now the Hadamard product $K=K_{1} \bullet K_{2}$ is a principal submatrix of $A \otimes B$, and a principal submatrix of a PSD matrix is PSD.
(There are many good approaches to this part.)
(2) Treating g as a real vector indexed by \mathcal{C}, we have $K=g g^{\top}$, and a matrix of this form is always PSD.
(3) The Gram matrix K of k is simply $Q\left(K_{1}\right)$, where K_{1} is the Gram matrix of k_{1}, and where the multiplication in the polynomial is Hadamard product. From (1), the PSD matrices are closed under Hadamard product, and it is a common fact that they are closed under positive scaling and addition; thus they are closed under the application of polynomials with non-negative coefficients.
(4) Let $T_{r}(x)$ be the r th Taylor approximation to $\exp (x)$ about 0 , a polynomial with non-negative coefficients. Then $T_{r}\left(k_{1}\right)$ converges to $k=\exp \left(k_{1}\right)$ as $r \rightarrow \infty$; equivalently, $T_{r}\left(K_{1}\right)$ converges to $K=\exp \left(K_{1}\right)$, where K and K_{1} are the Gram matrices of k and k_{1}. Here exp is the entry-wise exponential function, not the "matrix exponential".. From (3), $T_{r}\left(K_{1}\right)$ is PSD. As the PSD cone is a closed subset of $\mathbb{R}^{n \times n}$ (it's defined by non-strict inequalities $x^{\top} M x \geq 0$), the limit K is PSD, and this is the Gram matrix of K.
(5) Applying (2) to the function $f(u)=\exp \left(-\|u\|^{2}\right)$, the kernel $k_{1}(u, v)=\exp \left(-\|u\|^{2}-\|v\|^{2}\right)$ is PSD. Moreover the kernel $k_{2}(u, v)=2 u^{\top} v$ is PSD: if \mathcal{C} is a set of vectors, and we let the matrix U be defined by taking the elements of \mathcal{C} as columns, then the Gram matrix of k_{2} is $2 U^{\top} U$ which is PSD. By (4), the kernel $k_{3}(u, v)=\exp \left(2 u^{\top} v\right)$ is PSD. By (1), the kernel

$$
k(u, v)=k_{1}(u, v) k_{3}(u, v)=\exp \left(-\|u\|^{2}+2 u^{\top} v-\|v\|^{2}\right) \exp \left(-\|u-v\|^{2}\right)
$$

is PSD.

[^0]
2. Problem 2

(1) Suppose $x \in \mathbb{R}^{d}$; we wish to find $y \in C$ minimizing $\|x-y\|^{2}=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}$. As the constraints defining C apply to each y_{i} separately, the problem amounts to finding, for each i, a value $-1 \leq y_{i} \leq 1$ minimizing $\left(x_{i}-y_{i}\right)^{2}$. This is clearly achieved at

$$
y_{i}= \begin{cases}x_{i} /\left|x_{i}\right| & \text { if }\left|x_{i}\right|>1 \\ x_{i} & \text { otherwise }\end{cases}
$$

This formula is exact, so there is no convergence issue; effectively the method converges perfectly after one update on each coordinate.
(2) Let $z \in \mathbb{R}^{d}$ be given; we want $x \in \Delta$ minimizing the ℓ_{2} distance $f(x)=\|x-z\|$. We apply mirror descent, following the corollary on page 7 of the Lecture 13 notes. The objective is clearly 1-Lipschitz, with gradient $\nabla f(x)=(x-z) /\|x-z\|$, so we obtain the following convergence guarantee at iteration k :

$$
f\left(x_{k}^{\circ}\right)-f\left(x^{*}\right) \leq \sqrt{\frac{2 \log d}{k}}
$$

(3) (a) \S_{n}^{+}is convex: certainly any convex combination of symmetric matrices is symmetric, and if $A, B \in \S_{n}^{+}$, then

$$
x^{\top}(\lambda A+(1-\lambda) B) x=\lambda x^{\top} A x+(1-\lambda) x^{\top} B x
$$

is a convex combination of non-negative reals, thus non-negative, so a convex combination of PSD matrices is PSD.
\S_{n}^{+}is closed in $\mathbb{R}^{n \times n}$ as it is defined as an intersection of a linear subspace (the symmetric matrices) and the half-spaces $\left\langle M, v^{\top} v\right\rangle \geq 0$ for $v \in \mathbb{R}^{n}$, all of which are closed; an intersection of closed sets is closed.
(b) Let $A \in \S_{n}$. As \S_{n}^{+}is convex and closed, and the function $f(B)=\frac{1}{2}\|A-B\|_{F}^{2}$ is convex, a matrix B minimizes f over S_{n}^{+}iff it satisfies first-order optimality. Specifically, we must have that $\nabla f(B)=\sum_{i} \mu_{i} x_{i} x_{i}^{\top}$, for some $\mu_{i} \geq 0$ and some x_{i} for which B is tight for the constraint $x_{i}^{\top} B x_{i} \geq 0$ defining S_{n}^{+}.
We compute the gradient:

$$
\nabla\left(\frac{1}{2}\|A-B\|_{F}^{2}\right)=\nabla \frac{1}{2} \operatorname{tr}\left(A^{2}-2 A B+B^{2}\right)=B-A
$$

Thus, if we can write $B-A=\sum_{i} \mu_{i} x_{i} x_{i}^{\top}$ as above, then we certify B as optimal. Write the eigendecomposition $A=U \Sigma U^{\top}$, and let $B=U \Sigma_{+} U^{\top}$, where Σ_{+}replaces the negative entries of Σ by zero. Then

$$
B-A=U\left(\Sigma_{+}-\Sigma\right) U^{\top}=\sum_{i: \Sigma_{i i}<0}\left(-\Sigma_{i i}\right) U_{i} U_{i}^{\top}
$$

and we have $U_{i}^{\top} B U_{i}=\left(\Sigma_{+}\right)_{i i}=0$, thus fulfilling first-order optimality.
(4) We begin with the first claim. In class, we proved that

$$
\langle\pi(x)-x, \pi(x)-z\rangle \leq 0
$$

whenever $z \in \mathcal{C}$. Applying this with $z=\pi(y)$, we have

$$
\langle\pi(x)-x, \pi(x)-\pi(y)\rangle \leq 0
$$

Summing a copy of this inequality with the same thing with x and y reversed, we have

$$
\begin{gathered}
\langle\pi(x)-\pi(y)-(x-y), \pi(x)-\pi(y)\rangle \leq 0 \\
\pi(x)-\pi(y)\left\|^{2} \leq\langle x-y, \pi(x)-\pi(y)\rangle \leq\right\| x-y\| \| \pi(x)-\pi(y) \|
\end{gathered}
$$

by Cauchy-Schwartz. Cancelling $\|\pi(x)-\pi(y)\|$ from both sides yields the first claim.
The second claim follows by specializing to the case $y \in \mathcal{C}$, for which $\pi(y)=y$.

3. Problem 3

(1) (a) By definition, $f^{*}(y)=\sup _{x>0} x y-\frac{1}{x}$. When $y>0$, a sufficiently large choice of x makes the objective arbitrarily large, and the supremum is infinite. When $y \leq 0$, the objective is bounded above by 0 ; for $y=0$, this is achieved as $x \rightarrow \infty$, whereas for $y<0$, first-order optimality conditions show that the optimum is achieved at $x=(-y)^{-1 / 2}$, at which $f^{*}(y)=-2 \sqrt{-y}$. We have $D=(-\infty, 0]$.
(b) By definition, $f^{*}(y)=\sup _{x \in \mathbb{R}^{d}} y^{\top} x-\frac{1}{2}|x|_{2}^{2}$. The gradient of the objective is $y-x$, so first-order optimality conditions are satisfied at $x=y$, and we have $f^{*}(y)=\frac{1}{2}|x|_{2}^{2}(f$ is self-conjugate). Here $D=\mathbb{R}^{d}$.
(c) By definition, $f^{*}(y)=\sup _{x \in \mathbb{R}^{d}} y^{\top} x-\log \sum_{j=1}^{d} \exp \left(x_{j}\right)$. The partial derivative in x_{i} of the objective function is

$$
y_{i}-\frac{\exp x_{i}}{\sum_{j} \exp x_{j}}
$$

so the gradient may be made zero whenever y lies in the simplex Δ, by taking $x_{i}=\log y_{i}$. For such y, we thus have $f^{*}(y)=\sum_{i} y_{i} \log y_{i}$.
We next rule out all $y \notin \Delta$, so that $D=\Delta$. Consider x of the form $(\lambda, \lambda, \ldots, \lambda)$, for which the objective value is $\lambda \sum_{i} y_{i}-\lambda-\log d$. When $\sum_{i} y_{i} \neq 1$, this can be made arbitrarily large, by taking an extreme value of λ. On the other hand, if any coordinate y_{i} of y is negative, then taking x to be supported only on the i th coordinate, the objective value is $y_{i} x_{i}-\log \left((d-1)+\exp x_{i}\right)$, which is arbitrarily large when we take x_{i} to be a sufficiently large negative number. So y must lie in the simplex Δ.
(2) For all $x \in C$ and $y \in D$, we have $f^{*}(y) \geq y^{\top} x-f(x)$, so that $y^{\top} x-f^{*}(y) \leq f(x)$. Thus $f^{* *}(x)=\sup _{y \in D} y^{\top} x-f^{*}(y) \leq f(x)$.
(3) Here $C=\mathbb{R}^{d}$, so that the supremum is either achieved in some limit of arbitrarily distant points, or else at at point satisfying first-order optimality. The first case can actually occur, e.g. when $d=1, f(x)=-\exp (x)$, and $y=0$. In the other case, first-order optimality is that

$$
0=\nabla_{x}\left(y^{\top} x-f(x)\right)=y-\nabla f(x)
$$

so that $\nabla f\left(x^{*}\right)=y$.
(4) We will need the gradient of f^{*}. As f is strictly convex, $y=\nabla f(x)$ is an injective function of x, so we can write $x=(\nabla f)^{-1}(y)$. Then

$$
\begin{aligned}
f^{*}(y) & =y^{\top} x^{*}-f\left(x^{*}\right) \\
& =y^{\top}(\nabla f)^{-1}(y)-f\left((\nabla f)^{-1}(y)\right), \\
\nabla f^{*}(y) & \left.=(\nabla f)^{-1}(y)+D(\nabla f)^{-1}(y)[y]-D(\nabla f)^{-1}(y)\left[\nabla f\left((\nabla f)^{-1}\right)(y)\right)\right] \\
& =(\nabla f)^{-1}(y),
\end{aligned}
$$

where $D f(a)[b]$ denotes the Jacobian of f, taken at a, applied to the vector b.
We now compute the Bregman divergence:

$$
\begin{aligned}
D_{f^{*}}(\nabla f(y), \nabla f(x)) & =f^{*}(\nabla f(y))-f^{*}(\nabla f(x))-\left(\nabla f^{*}(\nabla f(x))\right)^{\top}(\nabla f(y)-\nabla f(x)) \\
& =\nabla f(y)^{\top} y-f(y)-\nabla f(x)^{\top} x+f(x)-x^{\top}(\nabla f(y)-\nabla f(x)) \\
& =f(x)-f(y)-(\nabla f(y))^{\top}(x-y) \\
& =D_{f}(x, y)
\end{aligned}
$$

4. Problem 4

(1) Adapting the proof of convergence of projected subgradient descent from the lecture notes, we have:

$$
\begin{aligned}
f\left(x_{s}\right)-f\left(x^{*}\right) & \leq g_{s}^{\top}\left(x_{s}-x^{*}\right) \\
& =\frac{\left\|g_{s}\right\|}{\eta}\left(x_{s}-y_{s+1}\right)^{\top}\left(x_{s}-x^{*}\right) \\
& \leq \frac{\left\|g_{s}\right\|}{2 \eta}\left(\left\|x_{s}-y_{s+1}\right\|^{2}+\left\|x_{s}-x^{*}\right\|^{2}-\left\|y_{s+1}-x^{*}\right\|^{2}\right) \\
& =\frac{\eta\left\|g_{s}\right\|}{2}+\frac{\left\|g_{s}\right\|}{2 \eta}\left(\left\|x_{s}-x^{*}\right\|^{2}-\left\|y_{s+1}-x^{*}\right\|^{2}\right)
\end{aligned}
$$

as $x_{s}-y_{s+1}$ has norm η,

$$
\leq \frac{\eta\left\|g_{s}\right\|}{2}+\frac{\left\|g_{s}\right\|}{2 \eta}\left(\left\|x_{s}-s^{*}\right\|^{2}-\left\|x_{s+1}-x^{*}\right\|^{2}\right)
$$

as the projection operator is a contraction.

Summing over s, and using the bounds $\left\|x_{1}-x^{*}\right\| \leq R$ and $\left\|g_{s}\right\| \leq L$, we have

$$
f\left(\bar{x}_{s}\right)-f\left(x^{*}\right) \leq \frac{\eta L}{2}+\frac{L R^{2}}{2 \eta k} .
$$

Taking $\eta=R / \sqrt{k}$, we obtain the rate $L R / \sqrt{k}$.
(2) (a) Starting from the definition of β-smoothness:

$$
\begin{aligned}
f\left(x_{s+1}\right)-f\left(x_{s}\right) & \leq \nabla f\left(x_{s}\right)^{\top}\left(x_{s+1}-x_{s}\right)+\frac{\beta}{2}\left\|x_{s+1}-x_{s}\right\|^{2} \\
& =\gamma_{s} \nabla f\left(x_{s}\right)^{\top}\left(y_{s}-x_{s}\right)+\frac{\beta}{2} \gamma_{s}^{2}\left\|y_{s}-x_{s}\right\|^{2} \\
& \leq \gamma_{s} \nabla f\left(x_{s}\right)^{\top}\left(x^{*}-x_{s}\right)+\frac{\beta}{2} \gamma_{s}^{2} R^{2},
\end{aligned}
$$

as $f\left(x_{s}\right)^{\top} y_{s} \leq f\left(x_{s}\right)^{\top} y$ for all $y \in C$,

$$
\leq \gamma_{s}\left(f\left(x^{*}\right)-f\left(x_{s}\right)\right)+\frac{\beta}{2} \gamma_{s}^{2} R^{2}
$$

by convexity.
(b) We induct on k. Continuing from the inequality above by subtracting $f\left(x^{*}\right)-f\left(x_{s}\right)$ from both sides, we have

$$
f\left(x_{s+1}\right)-f\left(x^{*}\right) \leq\left(1-\gamma_{s}\right)\left(f\left(x_{s}\right)-f\left(x^{*}\right)\right)+\frac{\beta}{2} \gamma_{s}^{2} R^{2}
$$

or, if we define $\delta_{s}=f\left(x_{s}\right)-f\left(x^{*}\right)$,

$$
\delta_{s+1} \leq\left(1-\gamma_{s}\right) \delta_{s}+\frac{\beta}{2} \gamma_{s}^{2} R^{2}
$$

Specializing to $s=1$, and noting that $\gamma_{1}=1$, we have that $\delta_{2}=\beta R^{2} / 2 \leq 2 \beta R^{2} / 3$, so that the base case of $k=2$ is satisfied. Now proceeding inductively, we have

$$
\begin{aligned}
\delta_{k} & \leq\left(1-\gamma_{k-1}\right) \delta_{k-1}+\frac{\beta}{2} \gamma_{k-1}^{2} R^{2} \\
& \leq \frac{2(k-2) \beta R^{2}}{k^{2}}+\frac{2 \beta R^{2}}{k^{2}}
\end{aligned}
$$

by induction and the definition of γ_{k-1},

$$
\begin{aligned}
& =\frac{2(k-1) \beta R^{2}}{k^{2}} \\
& \leq \frac{2 \beta R^{2}}{k+1}
\end{aligned}
$$

completing the induction.

MIT OpenCourseWare
http://ocw.mit.edu

18.657 Mathematics of Machine Learning

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: Date: Fall 2015.

