
18.657 PS SOLUTIONS

1. Problem 1

(1) Symmetry is clear. Let K1 and K2 be the PSD Gram matrices of k1 and k2, respectively.
Then the Gram matrix K of k is simply the Hadamard (or Schur) product K1 •K2; we wish
to see that this is PSD.

The Kronecker product K1⊗K2 is PSD: its eigenvalues are simply the pair products of an
eigenvalue of K1 with an eigenvalue from K2, as is easily seen from the identity

(K1 ⊗K2)(v ⊗ w) = (K1v)⊗ (K2w)

when v and w are eigenvectors of K1 and K2, respectively. Now the Hadamard product
K = K1 •K2 is a principal submatrix of A⊗ B, and a principal submatrix of a PSD matrix
is PSD.

(There are many good approaches to this part.)
(2) Treating g as a real vector indexed by C, we have K = gg⊤, and a matrix of this form is

always PSD.
(3) The Gram matrix K of k is simply Q(K1), where K1 is the Gram matrix of k1, and where the

multiplication in the polynomial is Hadamard product. From (1), the PSD matrices are closed
under Hadamard product, and it is a common fact that they are closed under positive scaling
and addition; thus they are closed under the application of polynomials with non-negative
coefficients.

(4) Let Tr(x) be the rth Taylor approximation to exp(x) about 0, a polynomial with non-negative
coefficients. Then Tr(k1) converges to k = exp(k1) as r → ∞; equivalently, Tr(K1) converges
to K = exp(K1), where K and K1 are the Gram matrices of k and k1. Here exp is the
entry-wise exponential function, not the “matrix exponential”.. From (3), Tr(K1) is PSD. As
the PSD cone is a closed subset of n

R
×n (it’s defined by non-strict inequalities x⊤Mx ≥ 0),

the limit K is PSD, and this is the Gram matrix of K.
(5) Applying (2) to the function f(u) = exp(−‖u‖2), the kernel k1(u, v) = exp(−‖u‖2 − ‖v‖2)

is PSD. Moreover the kernel k2(u, v) = 2u⊤v is PSD: if C is a set of vectors, and we let the
matrix U be defined by taking the elements of C as columns, then the Gram matrix of k2 is
2U⊤U which is PSD. By (4), the kernel k ⊤

3(u, v) = exp(2u v) is PSD. By (1), the kernel

k(u, v) = k1(u, v)k3(u, v) = exp(−‖u‖2 + 2u⊤v − ‖v‖2) exp(−‖u− v‖2)
is PSD.
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2. Problem 2

n(1) Suppose x ∈ d
R ; we wish to find y ∈ C minimizing ‖x − y‖2 =

∑

2
i=1

(xi − yi) . As the
constraints defining C apply to each yi separately, the problem amounts to finding, for each
i, a value −1 ≤ yi ≤ 1 minimizing (x 2

i − yi) . This is clearly achieved at

i
y =

{

xi/|x
i

| if |xi| > 1,

xi otherwise.

This formula is exact, so there is no convergence issue; effectively the method converges
perfectly after one update on each coordinate.

(2) Let z ∈ d
R be given; we want x ∈ ∆ minimizing the ℓ2 distance f(x) = ‖x − z‖. We apply

mirror descent, following the corollary on page 7 of the Lecture 13 notes. The objective
is clearly 1-Lipschitz, with gradient ∇f(x) = (x − z)/‖x − z‖, so we obtain the following
convergence guarantee at iteration k:

f(x◦
k)− f(x∗) ≤

√

2 log d
.

k

(3) (a) §+n is convex: certainly any convex combination of symmetric matrices is symmetric, and
if A,B ∈ §+n , then

x⊤(λA + (1− λ)B)x = λx⊤Ax+ (1 − λ)x⊤Bx

is a convex combination of non-negative reals, thus non-negative, so a convex combination
of PSD matrices is PSD.
§+n is closed in n×n

R as it is defined as an intersection of a linear subspace (the symmetric
matrices) and the half-spaces 〈M, v⊤v〉 ≥ 0 for v ∈ n

R , all of which are closed; an
intersection of closed sets is closed.

(b) Let A ∈ §n. As §+n is convex and closed, and the function f(B) = 1

2
‖A−B‖2F is convex, a

matrix B minimizes f over S+
n iff it satisfies first-order optimality. Specifically, we must

have that ∇f(B) =
∑

i µ
⊤

ixixi , for some µi ≥ 0 and some xi for which B is tight for the

constraint x⊤
i Bxi ≥ 0 defining S+

n .
We compute the gradient:

1∇(
1

A
2
‖ −B‖2F ) = ∇ tr(A2 − 2AB +B2) = B

2
−A.

Thus, if we can write B −A = i µixix
⊤
i as above, then we certify B as optimal.

Write the eigendecomposition A = UΣU⊤, and let B = UΣ+U
⊤, where Σ+ replaces the

negative entries of Σ by zero. T

∑

hen

B −A = U(Σ − Σ)U⊤ Σ ⊤
+ =

i:Σ

∑

( ii)UiUi ,

ii<0

−

and we have U⊤
i BUi = (Σ+)ii = 0, thus fulfilling first-order optimality.

(4) We begin with the first claim. In class, we proved that

〈π(x) − x, π(x) − z〉 ≤ 0,

whenever z ∈ C. Applying this with z = π(y), we have

〈π(x) − x, π(x) − π(y)〉 ≤ 0.

Summing a copy of this inequality with the same thing with x and y reversed, we have

〈π(x) − π(y)− (x− y), π(x) − π(y)〉 ≤ 0,

π(x)− π(y)‖2 ≤ 〈x− y, π(x)− π(y)〉 ≤ ‖x− y‖‖π(x)− π(y)‖,
by Cauchy–Schwartz. Cancelling ‖π(x)− π(y)‖ from both sides yields the first claim.

The second claim follows by specializing to the case y ∈ C, for which π(y) = y.
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3. Problem 3

(1) (a) By definition, f∗(y) = supx>0 xy− 1 . When y > 0, a sufficiently large choice of x makesx
the objective arbitrarily large, and the supremum is infinite. When y ≤ 0, the objective is
bounded above by 0; for y = 0, this is achieved as x → ∞, whereas for y < 0, first-order
optimality conditions show that the optimum is achieved at x = (−y)−1/2, at which
f∗(y) = −2

√−y. We have D = (−∞, 0].
(b) By definition, f∗(y) = sup 1

x∈ d y⊤R
x − 2

2
|x|2. The gradient of the objective is y − x, so

first-order optimality conditions are satisfied at x = y, and we have f∗(y) = 1 2
2
|x|2 (f is

self-conjugate). Here D = d
R .

⊤ d
(c) By definition, f∗(y) = supx∈Rd y x − log

∑

j=1
exp(xj). The partial derivative in xi of

the objective function is
expxi

yi − ,
j expxj

so the gradient may be made zero w

∑

henever y lies in the simplex ∆, by taking xi = log yi.
For such y, we thus have f∗(y) = i yi log yi.
We next rule out all y 6∈ ∆, so that

∑

D = ∆. Consider x of the form (λ, λ, . . . , λ), for which
the objective value is λ i yi − λ− log d. When i yi 6= 1, this can be made arbitrarily
large, by taking an extreme value of λ. On the other hand, if any coordinate yi of y is
negative, then taking x

∑

to be supported only on t

∑

he ith coordinate, the objective value is
yixi − log((d− 1)+ expxi), which is arbitrarily large when we take xi to be a sufficiently
large negative number. So y must lie in the simplex ∆.

(2) For all x ∈ C and y ∈ D, we have f∗(y) ≥ y⊤x − f(x), so that y⊤x − f∗(y) ≤ f(x). Thus
f∗∗(x) = supy∈D y⊤x

d
R

− f∗(y) ≤ f(x).

(3) Here C = , so that the supremum is either achieved in some limit of arbitrarily distant
points, or else at at point satisfying first-order optimality. The first case can actually occur,
e.g. when d = 1, f(x) = − exp(x), and y = 0. In the other case, first-order optimality is that

0 = ∇x(y
⊤x− f(x)) = y

∗

−∇f(x),

so that ∇f(x ) = y.
(4) We will need the gradient of f∗. As f is strictly convex, y = ∇f(x) is an injective function of

x, so we can write x = (∇f)−1(y). Then

f∗(y) = y⊤x∗ − f(x∗)

= y⊤(∇f)−1(y)− f((∇f)−1(y)),

∇f∗(y) = (∇f)−1(y) +D(∇f)−1(y)[y]

−1

−D(∇f)−1(y)[∇f((∇f)−1)(y))]

= (∇f) (y),

where Df(a)[b] denotes the Jacobian of f , taken at a, applied to the vector b.
We now compute the Bregman divergence:

Df∗(∇f(y),∇f(x)) = f∗(∇f(y))− f∗(∇f(x)) − (∇f∗(∇f(x)))⊤(∇f(y)−∇f(x))

= ∇f(y)⊤y − f(y)−∇f(x)⊤x+ f(x)− x⊤(∇f(y)−∇f(x))

= f(x)− f(y)− (∇f(y))⊤(x− y)

= Df (x, y).



4 18.657 PS 2 SOLUTIONS

4. Problem 4

(1) Adapting the proof of convergence of projected subgradient descent from the lecture notes,
we have:

f(xs)− f(x∗) ≤ g⊤s (xs − x∗)

=
‖gs‖

(xs
η

− ys+1)
⊤(xs − x∗)

‖g≤ s‖
(

2η
‖xs − ys+1‖2 + ‖xs − x∗‖2 − ‖ys+1 − x∗‖2)

η
=

‖gs‖ g
+

‖ s‖
2

(
2η

‖xs − x∗‖2 − ‖ys+1 − x∗‖2),

as xs − ys+1 has norm η,

η‖g≤ s‖ g
+

‖ s‖
2

( s
η

‖xs − ∗‖2 − ‖xs+1
2

− x∗‖2),

as the projection operator is a contraction.

Summing over s, and using the bounds ‖x1 − x∗‖ ≤ R and ‖gs‖ ≤ L, we have

∗ ηL LR2

f(x̄s)− f(x ) ≤ + .
2 2ηk

Taking η = R/
√
k, we obtain the rate LR/

√
k.

(2) (a) Starting from the definition of β-smoothness:

β
f(xs+1)− f(xs) ≤ ∇f(xs)

⊤(xs+1 − xs) +
2
‖xs+1 − xs‖2

β
= γs∇f(x ⊤

s) (ys − xs) + γ2

2 s‖ys − xs‖2

⊤ ∗ β≤ γs∇f(xs) (x − xs) + γ2R2,
2 s

as f(xs)
⊤y ⊤

s ≤ f(xs) y for all y ∈ C,

β≤ γs(f(x
∗)− f(xs)) + γ2

2 sR
2,

by convexity.

(b) We induct on k. Continuing from the inequality above by subtracting f(x∗)−f(xs) from
both sides, we have

β
f(xs+1)− f(x∗) ≤ (1 − γs)(f(xs)− f(x∗)) + γ2

2 sR
2,

or, if we define δs = f(x ∗
s)− f(x ),

β
δs+1 ≤ (1 − γs)δs + γ2

2 sR
2.
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Specializing to s = 1, and noting that γ1 = 1, we have that δ2 = βR2/2 ≤ 2βR2/3, so
that the base case of k = 2 is satisfied. Now proceeding inductively, we have

β
δk ≤ (1 − γk−1)δk−1 + γ2 2

2 k−1R

2(k − 2)βR2 2βR2

≤
k2

+
k2

,

by induction and the definition of γk−1,

2(k − 1)βR2

=
k2

2βR2

≤ ,
k + 1

completing the induction.
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