
18.657. Fall 2105

Rigollet November 6, 2015

Problem set #3 (due Wed., November 11)

Should be typed in LAT XE

Problem 1. Kernels

Let k1 and k2 be two PSD kernels on a space X .

1. Show that the kernel k defined by k(u, v) = k1(u, v)k2(u, v) for any u, v ∈ X is PSD.
[Hint: consider the Hadamard product between eigenvalue decompositions

of the Gram matrices associated to k1 and k2].

2. Let g : C → IR be a given function. Show that the kernel k defined by k(u, v) =
g(u)g(v) is PSD.

3. Let Q be a polynomial with nonnegative coefficients. Show that the kernel k defined
by k(u, v) = Q(k1(u, v)) for any u, v ∈ X is PSD.

4. Show that the kernel k defined by k(u, v) = exp(k1(u, v)) for any u, v ∈ X is PSD.
[Hint: use series expansion].

5. Let X = IRd and ‖ · ‖ denote the Euclidean norm on IRd. Show that the kernel k
defined by k(u, v) = exp(−‖u− v‖2) is PSD.

Problem 2. Convexity and Projections

1. Give an algorithm that computes projections on the set

C =
{

x ∈ IRd : max |xi| ≤ 1
1≤i≤d

}

and prove a rate of convergence.

2. Give an algorithm that computes projections on the set

d

∆ =
{

x ∈ IRd :
∑

xi = 1 , xi ≥ 0
}

i=1

and prove a rate of convergence.

page 1 of 3



3. Recall that the Euclidean norm on n×n real matrices is also known as the Frobenius
norm and is defined by ‖M‖2 = Trace(M⊤M). Let Sn be the set of n×n symmetric
matrices with real entries. Let S+

n denote the set of n×n symmetric positive definite
matrices with real entries, that is M ∈ Sn if and only if M ∈ Sn and

x⊤Mx ≥ 0, ∀ x ∈ IRn .

(a) Show that S+
n is convex and closed.

(b) Give an explicit formula for the projection (with respect to the Frobenius norm)
of a matrix M ∈ Sn onto S+

n

4. Let C ⊂ IRd be a closed convex set and for any x ∈ IRd denote by π(x) its projection
onto C. Show that for any x, y ∈ IRd, it holds

‖π(x)− π(y)‖ ≤ ‖x− y‖

where ‖ · ‖ denotes the Euclidean norm.

Show that for any y ∈ C,
‖π(x)− y‖ ≤ ‖x− y‖ ,

Problem 3. Convex conjugate

For any function f : D ⊂ IRd → IR, define its convex conjugate f ∗ by

f ∗(y) = sup
(

y⊤x− f(x)
x∈

)

. (1)
C

The domain of the function f ∗ is taken to be the set D = {y ∈ IRd : f ∗(y) < ∞}.

1. Find f ∗ and D if

(a) f(x) = 1/x, C = (0,∞),

(b) f(x) = 1

2

(c) f(x) = log
∑d

j=1
exp(xj), x = (x1, . . . , xd), C = IRd.

Let f be strictly convex and differentiable and that C = IRd.

2. Show that f(x) ≥ f ∗∗(x) for all x ∈ C.

3. Show that the supremum in (1) is attained at x∗ such that ∇f(x∗) = y.

4. Recall that Df (·, ·) denotes the Bregman divergence associated to f . Show that

Df (x, y) = Df∗

(

∇f(y),∇f(x)
)

page 2 of 3

|x|22, C = IRd,



Problem 4. Around gradient descent

In what follows, we want to solve the constrained problem:

min f(x) .
x∈C

where f is a L-Lipschitz convex function and C ⊂ IRd is a compact convex set with
diameter at most R (in Euclidean norm). Denote by x∗ a minimum of f on C.

1. Assume that we replace the updates in the projected gradient descent algorithm by

gs
ys+1 = xs − η , gs ∈ ∂f(xs) .

‖gs‖

xs+1 = πC(ys+1) ,

where πC(·) is the projection onto C.

What guarantees can you prove for this algorithm under the same assumptions?

2. Consider the following updates:

ys ∈ argmin∇f(xs)
⊤y

y∈C

xs+1 = (1− γs)xs + γsys ,

where γs = 2/(s+ 1).

In what follows, we assume that f is differentiable and β-smooth:

β
f(y)− f(x) ≤ ∇f(x)⊤(y − x) + |y − x|2

2 2 .

(a) Show that
β

f(x ∗
s+1)− f(xs) ≤ γs(f(x )− f(xs)) + γ2 2

sR2

(b) Conclude that for any k ≥ 2,

2

f(xk)− f(x∗ 2βR
) ≤ .

k + 1
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