18.657. Fall 2105 Rigollet

November 6, 2015

Problem set #3 (due Wed., November 11)

Should be typed in $emtide HT_EX$

Problem 1. Kernels

Let k_1 and k_2 be two PSD kernels on a space \mathcal{X} .

- 1. Show that the kernel k defined by $k(u, v) = k_1(u, v)k_2(u, v)$ for any $u, v \in \mathcal{X}$ is PSD. [Hint: consider the Hadamard product between eigenvalue decompositions of the Gram matrices associated to k_1 and k_2].
- 2. Let $g : \mathcal{C} \to \mathbb{R}$ be a given function. Show that the kernel k defined by k(u, v) = g(u)g(v) is PSD.
- 3. Let Q be a polynomial with nonnegative coefficients. Show that the kernel k defined by $k(u, v) = Q(k_1(u, v))$ for any $u, v \in \mathcal{X}$ is PSD.
- 4. Show that the kernel k defined by $k(u, v) = \exp(k_1(u, v))$ for any $u, v \in \mathcal{X}$ is PSD. [Hint: use series expansion].
- 5. Let $\mathcal{X} = \mathbb{R}^d$ and $\|\cdot\|$ denote the Euclidean norm on \mathbb{R}^d . Show that the kernel k defined by $k(u, v) = \exp(-\|u v\|^2)$ is PSD.

Problem 2. Convexity and Projections

1. Give an algorithm that computes projections on the set

$$C = \left\{ x \in \mathbb{R}^d : \max_{1 \le i \le d} |x_i| \le 1 \right\}$$

and prove a rate of convergence.

2. Give an algorithm that computes projections on the set

$$\Delta = \left\{ x \in \mathbb{R}^d : \sum_{i=1}^d x_i = 1, x_i \ge 0 \right\}$$

and prove a rate of convergence.

3. Recall that the Euclidean norm on $n \times n$ real matrices is also known as the Frobenius norm and is defined by $||M||^2 = \text{Trace}(M^{\top}M)$. Let S_n be the set of $n \times n$ symmetric matrices with real entries. Let S_n^+ denote the set of $n \times n$ symmetric positive definite matrices with real entries, that is $M \in S_n$ if and only if $M \in S_n$ and

$$x^{\top}Mx \ge 0, \quad \forall \ x \in \mathbb{R}^n.$$

- (a) Show that \mathcal{S}_n^+ is convex and closed.
- (b) Give an explicit formula for the projection (with respect to the Frobenius norm) of a matrix $M \in S_n$ onto S_n^+
- 4. Let $C \subset \mathbb{R}^d$ be a closed convex set and for any $x \in \mathbb{R}^d$ denote by $\pi(x)$ its projection onto C. Show that for any $x, y \in \mathbb{R}^d$, it holds

$$\|\pi(x) - \pi(y)\| \le \|x - y\|$$

where $\|\cdot\|$ denotes the Euclidean norm.

Show that for any $y \in \mathcal{C}$,

$$\|\pi(x) - y\| \le \|x - y\|,$$

Problem 3. Convex conjugate

For any function $f: D \subset \mathbb{R}^d \to \mathbb{R}$, define its convex conjugate f^* by

$$f^{*}(y) = \sup_{x \in C} \left(y^{\top} x - f(x) \right).$$
 (1)

The domain of the function f^* is taken to be the set $D = \{y \in \mathbb{R}^d : f^*(y) < \infty\}.$

1. Find f^* and D if

(a)
$$f(x) = 1/x, C = (0, \infty),$$

(b) $f(x) = \frac{1}{2}|x|_2^2, C = \mathbb{R}^d,$
(c) $f(x) = \log \sum_{j=1}^d \exp(x_j), x = (x_1, \dots, x_d), C = \mathbb{R}^d.$

Let f be strictly convex and differentiable and that $C = \mathbb{R}^d$.

- 2. Show that $f(x) \ge f^{**}(x)$ for all $x \in C$.
- 3. Show that the supremum in (1) is attained at x^* such that $\nabla f(x^*) = y$.
- 4. Recall that $D_f(\cdot, \cdot)$ denotes the Bregman divergence associated to f. Show that

$$D_f(x,y) = D_{f^*}(\nabla f(y), \nabla f(x))$$

Problem 4. Around gradient descent

In what follows, we want to solve the constrained problem:

$$\min_{x \in C} f(x) \, .$$

where f is a L-Lipschitz convex function and $C \subset \mathbb{R}^d$ is a compact convex set with diameter at most R (in Euclidean norm). Denote by x^* a minimum of f on C.

1. Assume that we replace the updates in the projected gradient descent algorithm by

$$y_{s+1} = x_s - \eta \frac{g_s}{\|g_s\|}, \qquad g_s \in \partial f(x_s),$$
$$x_{s+1} = \pi_C(y_{s+1}),$$

where $\pi_C(\cdot)$ is the projection onto C.

What guarantees can you prove for this algorithm under the same assumptions?

2. Consider the following updates:

$$y_s \in \operatorname*{argmin}_{y \in C} \nabla f(x_s)^\top y$$
$$x_{s+1} = (1 - \gamma_s) x_s + \gamma_s y_s \,,$$

where $\gamma_s = 2/(s+1)$.

In what follows, we assume that f is differentiable and β -smooth:

$$f(y) - f(x) \le \nabla f(x)^{\top} (y - x) + \frac{\beta}{2} |y - x|_2^2$$

(a) Show that

$$f(x_{s+1}) - f(x_s) \le \gamma_s(f(x^*) - f(x_s)) + \frac{\beta}{2}\gamma_s^2 R^2$$

(b) Conclude that for any $k \ge 2$,

$$f(x_k) - f(x^*) \le \frac{2\beta R^2}{k+1}$$

18.657 Mathematics of Machine Learning Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.