> Problem set \#3 (due Wed., November 11)

Should be typed in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$

Problem 1. Kernels

Let k_{1} and k_{2} be two PSD kernels on a space \mathcal{X}.

1. Show that the kernel k defined by $k(u, v)=k_{1}(u, v) k_{2}(u, v)$ for any $u, v \in \mathcal{X}$ is PSD.
[Hint: consider the Hadamard product between eigenvalue decompositions of the Gram matrices associated to k_{1} and k_{2}].
2. Let $g: \mathcal{C} \rightarrow \mathbb{R}$ be a given function. Show that the kernel k defined by $k(u, v)=$ $g(u) g(v)$ is PSD.
3. Let Q be a polynomial with nonnegative coefficients. Show that the kernel k defined by $k(u, v)=Q\left(k_{1}(u, v)\right)$ for any $u, v \in \mathcal{X}$ is PSD.
4. Show that the kernel k defined by $k(u, v)=\exp \left(k_{1}(u, v)\right)$ for any $u, v \in \mathcal{X}$ is PSD. [Hint: use series expansion].
5. Let $\mathcal{X}=\mathbb{R}^{d}$ and $\|\cdot\|$ denote the Euclidean norm on \mathbb{R}^{d}. Show that the kernel k defined by $k(u, v)=\exp \left(-\|u-v\|^{2}\right)$ is PSD.

Problem 2. Convexity and Projections

1. Give an algorithm that computes projections on the set

$$
C=\left\{x \in \mathbb{R}^{d}: \max _{1 \leq i \leq d}\left|x_{i}\right| \leq 1\right\}
$$

and prove a rate of convergence.
2. Give an algorithm that computes projections on the set

$$
\Delta=\left\{x \in \mathbb{R}^{d}: \sum_{i=1}^{d} x_{i}=1, x_{i} \geq 0\right\}
$$

and prove a rate of convergence.
3. Recall that the Euclidean norm on $n \times n$ real matrices is also known as the Frobenius norm and is defined by $\|M\|^{2}=\operatorname{Trace}\left(M^{\top} M\right)$. Let \mathcal{S}_{n} be the set of $n \times n$ symmetric matrices with real entries. Let \mathcal{S}_{n}^{+}denote the set of $n \times n$ symmetric positive definite matrices with real entries, that is $M \in \mathcal{S}_{n}$ if and only if $M \in \mathcal{S}_{n}$ and

$$
x^{\top} M x \geq 0, \quad \forall x \in \mathbb{R}^{n} .
$$

(a) Show that \mathcal{S}_{n}^{+}is convex and closed.
(b) Give an explicit formula for the projection (with respect to the Frobenius norm) of a matrix $M \in \mathcal{S}_{n}$ onto \mathcal{S}_{n}^{+}
4. Let $C \subset \mathbb{R}^{d}$ be a closed convex set and for any $x \in \mathbb{R}^{d}$ denote by $\pi(x)$ its projection onto C. Show that for any $x, y \in \mathbb{R}^{d}$, it holds

$$
\|\pi(x)-\pi(y)\| \leq\|x-y\|
$$

where $\|\cdot\|$ denotes the Euclidean norm.
Show that for any $y \in \mathcal{C}$,

$$
\|\pi(x)-y\| \leq\|x-y\|,
$$

Problem 3. Convex conjugate

For any function $f: D \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$, define its convex conjugate f^{*} by

$$
\begin{equation*}
f^{*}(y)=\sup _{x \in C}\left(y^{\top} x-f(x)\right) \tag{1}
\end{equation*}
$$

The domain of the function f^{*} is taken to be the set $D=\left\{y \in \mathbb{R}^{d}: f^{*}(y)<\infty\right\}$.

1. Find f^{*} and D if
(a) $f(x)=1 / x, C=(0, \infty)$,
(b) $f(x)=\frac{1}{2}|x|_{2}^{2}, C=\mathbb{R}^{d}$,
(c) $f(x)=\log \sum_{j=1}^{d} \exp \left(x_{j}\right), x=\left(x_{1}, \ldots, x_{d}\right), C=\mathbb{R}^{d}$.

Let f be strictly convex and differentiable and that $C=\mathbb{R}^{d}$.
2. Show that $f(x) \geq f^{* *}(x)$ for all $x \in C$.
3. Show that the supremum in (1) is attained at x^{*} such that $\nabla f\left(x^{*}\right)=y$.
4. Recall that $D_{f}(\cdot, \cdot)$ denotes the Bregman divergence associated to f. Show that

$$
D_{f}(x, y)=D_{f^{*}}(\nabla f(y), \nabla f(x))
$$

Problem 4. Around gradient descent

In what follows, we want to solve the constrained problem:

$$
\min _{x \in C} f(x)
$$

where f is a L-Lipschitz convex function and $C \subset \mathbb{R}^{d}$ is a compact convex set with diameter at most R (in Euclidean norm). Denote by x^{*} a minimum of f on C.

1. Assume that we replace the updates in the projected gradient descent algorithm by

$$
\begin{aligned}
& y_{s+1}=x_{s}-\eta \frac{g_{s}}{\left\|g_{s}\right\|}, \quad g_{s} \in \partial f\left(x_{s}\right) . \\
& x_{s+1}=\pi_{C}\left(y_{s+1}\right)
\end{aligned}
$$

where $\pi_{C}(\cdot)$ is the projection onto C.
What guarantees can you prove for this algorithm under the same assumptions?
2. Consider the following updates:

$$
\begin{gathered}
y_{s} \in \underset{y \in C}{\operatorname{argmin}} \nabla f\left(x_{s}\right)^{\top} y \\
x_{s+1}=\left(1-\gamma_{s}\right) x_{s}+\gamma_{s} y_{s},
\end{gathered}
$$

where $\gamma_{s}=2 /(s+1)$.
In what follows, we assume that f is differentiable and β-smooth:

$$
f(y)-f(x) \leq \nabla f(x)^{\top}(y-x)+\frac{\beta}{2}|y-x|_{2}^{2}
$$

(a) Show that

$$
f\left(x_{s+1}\right)-f\left(x_{s}\right) \leq \gamma_{s}\left(f\left(x^{*}\right)-f\left(x_{s}\right)\right)+\frac{\beta}{2} \gamma_{s}^{2} R^{2}
$$

(b) Conclude that for any $k \geq 2$,

$$
f\left(x_{k}\right)-f\left(x^{*}\right) \leq \frac{2 \beta R^{2}}{k+1}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.657 Mathematics of Machine Learning

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

