18.657 PS 2 SOLUTIONS

1. Problem 1

(1) Let Y_{1}, \ldots, Y_{n} be ghost copies of X_{1}, \ldots, X_{n}. Then we have

$$
\begin{aligned}
\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left[f\left(X_{i}\right)-\mathbb{E}[f(X)]\right]\right|\right] & =\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left[f\left(X_{i}\right)-\mathbb{E}\left[f\left(Y_{i}\right)\right]\right]\right|\right] \\
& \leq \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left[f\left(X_{i}\right)-f\left(Y_{i}\right)\right]\right|\right]
\end{aligned}
$$

by Jensen's inequality,

$$
=\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n}\left[f\left(X_{i}\right)-f\left(Y_{i}\right)\right]\right|\right],
$$

as $\sigma_{i}\left[f\left(X_{i}\right)-f\left(Y_{i}\right)\right]$ and $f\left(X_{i}\right)-f\left(Y_{i}\right)$ have the same distribution,

$$
\begin{aligned}
& \left.=\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n}\left[\left(f\left(X_{i}\right)-\mathbb{E}\left[f\left(X_{i}\right)\right]\right)-\left(f\left(Y_{i}\right)-\mathbb{E}\left[f\left(Y_{i}\right)\right]\right)\right]\right|\right]\right] \\
& \leq 2 \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n}\left[f\left(X_{i}\right)-\mathbb{E}\left[f\left(X_{i}\right)\right]\right]\right|\right]
\end{aligned}
$$

by the triangle inequality.
(2) The distribution of g_{i} is the same as that of $\left|g_{i}\right| \sigma_{i}$, so we can write

$$
\begin{aligned}
\mathbb{E}\left[\sup _{f \in \mathcal{F}} \sum_{i=1}^{n} g_{i} f\left(X_{i}\right)\right] & =\mathbb{E}_{X_{i}, \sigma_{i}}\left[\mathbb{E}_{g_{i}}\left[\sup _{f \in \mathcal{F}} \sum_{i=1}^{n}\left|g_{i}\right| \sigma_{i} f\left(X_{i}\right) \mid X_{i}, \sigma_{i}\right]\right] \\
& \geq \mathbb{E}_{X_{i}, \sigma_{i}}\left[\sup _{f \in \mathcal{F}} \sum_{i=1}^{n} \mathbb{E}\left[\left|g_{i}\right|\right] \sigma_{i} f\left(X_{i}\right)\right]
\end{aligned}
$$

by Jensen's inequality,

$$
=\sqrt{\frac{2}{\pi}} \mathbb{E}\left[\sup _{f \in \mathcal{F}} \sum_{i=1}^{n} \sigma_{i} f\left(X_{i}\right)\right],
$$

using the first absolute moment of the standard Gaussian.
(3) We compute:

$$
\begin{aligned}
R_{n}(\mathcal{F}+h) & =\mathbb{E}\left[\sup _{f \in \mathcal{F}} \frac{1}{n}\left|\sum_{i=1}^{n} \sigma_{i}\left(f\left(X_{i}\right)+h\left(X_{i}\right)\right)\right|\right] \\
& \leq \mathbb{E}\left[\sup _{f \in \mathcal{F}} \frac{1}{n}\left|\sum_{i=1}^{n} \sigma_{i} f\left(X_{i}\right)\right|\right]+\mathbb{E}\left[\frac{1}{n}\left|\sum_{i=1}^{n} h\left(X_{i}\right)\right|\right]
\end{aligned}
$$

by the triangle inequality,

$$
\begin{aligned}
& =R_{n}(\mathcal{F})+\mathbb{E}\left[\frac{1}{n}\left|\sum_{i=1}^{n} h\left(X_{i}\right)\right|\right] \\
& \leq R_{n}(\mathcal{F})+\frac{1}{n} \sqrt{\mathbb{E}\left[\left(\sum_{i=1}^{n} \sigma_{i} h\left(X_{i}\right)\right)^{2}\right]}
\end{aligned}
$$

by Jensen's inequality,

$$
\begin{aligned}
& =R_{n}(\mathcal{F})+\frac{1}{n} \sqrt{\sum_{i=1}^{n} \mathbb{E}\left[h\left(X_{i}\right)^{2}\right]+2 \sum_{i<j} \mathbb{E}\left[\sigma_{i} \sigma_{j} h\left(X_{i}\right) h\left(X_{j}\right)\right]} \\
& =R_{n}(\mathcal{F})+\frac{1}{n} \sqrt{\sum_{i=1}^{n} \mathbb{E}\left[h\left(X_{i}\right)^{2}\right]}
\end{aligned}
$$

by symmetry,

$$
\begin{aligned}
& \leq R_{n}(\mathcal{F})+\frac{1}{n} \sqrt{n\|h\|_{\infty}^{2}} \\
& =R_{n}(\mathcal{F})+\frac{\|h\|_{\infty}}{n}
\end{aligned}
$$

(4) By the triangle inequality, we have

$$
\begin{aligned}
R_{n}\left(\mathcal{F}_{1}+\ldots+\mathcal{F}_{k}\right) & =\mathbb{E}\left[\sup _{f_{j} \in \mathcal{F}_{j}} \frac{1}{n}\left|\sum_{i=1}^{n} \sigma_{i} \sum_{j=1}^{k} f_{j}\left(X_{i}\right)\right|\right] \\
& \leq \sum_{j=1}^{k} \mathbb{E}\left[\sup _{f_{j} \in \mathcal{F}_{j}} \frac{1}{n}\left|\sum_{i=1}^{n} \sigma_{i} f_{j}\left(X_{i}\right)\right|\right] \\
& =\sum_{j=1}^{k} R_{n}\left(\mathcal{F}_{j}\right)
\end{aligned}
$$

(5) The supremum over different choices of f_{j} is at least the supremum over a single repeated choice:

$$
\begin{aligned}
R_{n}(\underbrace{\mathcal{F}+\ldots+\mathcal{F}}_{k}) & =\mathbb{E}\left[\sup _{f_{j} \in \mathcal{F}} \frac{1}{n}\left|\sum_{i=1}^{n} \sigma_{i} \sum_{j=1}^{k} f_{j}\left(X_{i}\right)\right|\right] \\
& \geq \mathbb{E}\left[\sup _{f \in \mathcal{F}} \frac{1}{n}\left|\sum_{i=1}^{n} \sigma_{i} \sum_{j=1}^{k} f\left(X_{i}\right)\right|\right] \\
& =k \mathbb{E}\left[\sup _{f \in \mathcal{F}} \frac{1}{n}\left|\sum_{i=1}^{n} \sigma_{i} f\left(X_{i}\right)\right|\right] \\
& =k R_{n}(\mathcal{F}),
\end{aligned}
$$

which provides the reverse bound to that of (4), establishing equality in this case.

2. Problem 2

(1) Let A be a maximum 2ε-packing of (T, d); let B be a minimum ε-covering. As B is an ε covering, for each $a \in A$ there exists some choice of $b(a) \in B$ such that $d(a, b(a)) \leq \varepsilon$. This map $b: A \rightarrow B$ is an injection: by the triangle inequality, no point in B can be within ε of two points of A, as these are at least 2ε apart. Thus $|A| \leq|B|$, so that $D(T, d, 2 \varepsilon) \leq N(T, d, \varepsilon)$.

Let C be maximum ε-packing. Note that C is in fact an ε-covering: if some point of T had distance greater than ε to each point of C, then we could add it to C to produce a larger ε-packing, contradicting maximality. It follows that $N(T, d, \varepsilon) \leq D(T, d, \varepsilon)$.
(2) Let B^{n} denote the Euclidean ball in \mathbb{R}^{n}. Let $u \in B^{n}$ and $v \in B^{m}$. Then we can write $u=u_{*}+\varepsilon_{u}, v=v_{*}+\varepsilon_{v}$, where $u_{*} \in N_{n}, v_{*} \in N_{m}, \varepsilon_{u} \in \frac{1}{4} B^{n}$, and $\varepsilon_{v} \in \frac{1}{4} B^{m}$. We compute:

$$
\begin{aligned}
\|M\| & =\sup _{u \in B^{n}, v \in B^{m}} u^{\top} M v \\
& =\sup _{u_{*}, v_{*}, \varepsilon_{u}, \varepsilon_{v}} u_{*}^{\top} M v_{*}+\varepsilon_{u}^{\top} M v_{*}+u^{\top} M \varepsilon_{v} \\
& \leq\left(\sup _{u_{*} \in N_{n}, v_{*} \in N_{m}} u_{*}^{\top} M v_{*}\right)+\left(\sup _{\varepsilon_{u} \in \frac{1}{4} B^{n}, v_{*} \in N_{m}} \varepsilon_{u}^{\top} M v_{*}\right)+\left(\sup _{u \in B^{n}, \varepsilon_{v} \in \frac{1}{4} B^{m}} u^{\top} M \varepsilon_{v}\right) \\
& \leq\left(\max _{u_{*} \in N_{n}, v_{*} \in N_{m}} u_{*}^{\top} M v_{*}\right)+\frac{1}{4}\|M\|+\frac{1}{4}\|M\| .
\end{aligned}
$$

Rearranging, we have

$$
\|M\| \leq 2 \max _{u_{*} \in N_{n}, v_{*} \in N_{m}} u_{*}^{\top} M v_{*}
$$

as desired.
(3) By independence and Hoeffding's lemma, we have, for all $s>0$,

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(s u^{\top} M v\right)\right] & =\prod_{i, j} \mathbb{E}\left[\exp \left(s u_{i} M_{i j} v_{j}\right)\right] \\
& \leq \prod_{i, j} \mathbb{E}\left[\exp \left(\frac{1}{2} s^{2} u_{i}^{2} v_{j}^{2}\right)\right] \\
& =\mathbb{E}\left[\exp \left(\frac{1}{2} s^{2} \sum_{i, j} u_{i}^{2} v_{j}^{2}\right)\right] \\
& \leq \exp \left(s^{2} / 2\right)
\end{aligned}
$$

whenever $u \in B^{n}$ and $v \in B^{m}$.
Recall from the notes that B^{d} has covering number at most $\left(\frac{3}{\varepsilon}\right)^{d}$, so that we are maximizing over $\left|N_{n} \times N_{m}\right| \leq 12^{n+m}$ points. It follows from the standard maximal inequality for subgaussian random variables, or else by explicitly using Jensen with log and exp and replacing a maximum by a sum, that

$$
\mathbb{E}\|M\| \leq 2 \sqrt{2 \log \left(12^{m+n}\right)} \leq C(\sqrt{m}+\sqrt{n})
$$

3. Problem 3

(1) Let A be an ε-net for $[0,1]$; we can construct one with size at most $\frac{1}{2 \varepsilon}+1$. Let $X_{\text {pre }}$ denote the set of non-decreasing functions from $\left\{x_{1}, \ldots, x_{n},\right\}$ to A, and let X be the set of functions $[0,1] \rightarrow[0,1]$ defined by piecewise linear extension of functions in $X_{\text {pre }}$ (and constant extension on $\left[0, x_{1}\right]$ and $\left.\left[x_{n}, 1\right]\right)$. It is straightforward to see that X is an ε-net for $\left(\mathcal{F}, d_{\infty}^{x}\right)$: given $f \in \mathcal{F}$, we define $g \in X_{\text {pre }}$ by taking $g\left(x_{i}\right)$ to be the least point of A lying within ε of $f\left(x_{i}\right)$, and then the function in X defined by extension of g is within ε of f.

It remains to count X. Let $a_{1}<\ldots<a_{k}$ be the elements of A, where $k \leq \frac{1}{2 \varepsilon}+1$. Functions $f \in X$ are uniquely defined by the count for each $1 \leq i \leq k$ of how many x_{j} satisfy $f\left(x_{j}\right)=a_{i}$. A naive count of the possibilities for these values yields

$$
N\left(\mathcal{F}, d_{\infty}^{x}, \varepsilon\right) \leq|X| \leq(n+1)^{1+1 / 2 \varepsilon} \leq n^{2 \varepsilon}
$$

valid for $n \geq 3$.
(2) As $N\left(\mathcal{F}, d_{2}^{x}, \varepsilon\right) \leq N\left(\mathcal{F}, d_{\infty}^{x}, \varepsilon\right)$, and $|f| \leq 1$ for all $f \in \mathcal{F}$, the chaining bound yields

$$
\begin{aligned}
\mathcal{R}_{n} & \leq \inf _{\varepsilon>0} 4 \varepsilon+\frac{12}{\sqrt{n}} \int_{\varepsilon}^{1} \sqrt{\log N\left(\mathcal{F}, d_{2}^{x}, t\right)} \mathrm{d} t \\
& \leq \inf _{\varepsilon>0} 4 \varepsilon+\frac{12}{\sqrt{n}} \int_{\varepsilon}^{1} \sqrt{t^{-1} \log n} \mathrm{~d} t \\
& =\inf _{\varepsilon>0} 4 \varepsilon+24 \sqrt{\frac{\log n}{n}}(1-\sqrt{\varepsilon}) \\
& \leq \lim _{\varepsilon \rightarrow 0} 4 \varepsilon+24 \sqrt{\frac{\log n}{n}}(1-\sqrt{\varepsilon}) \\
& =24 \sqrt{\frac{\log n}{n}} .
\end{aligned}
$$

(3) We bound $N\left(\mathcal{F}, d_{1}^{x}, \varepsilon\right) \leq N\left(\mathcal{F}, d_{\infty}^{x}, \varepsilon\right) \leq n^{2 / \varepsilon}$. The theorem in Section 5.2.1 yields

$$
\begin{aligned}
\mathcal{R}_{n} & \leq \inf _{\varepsilon} \varepsilon+\sqrt{\frac{2 \log \left(2 N\left(\mathcal{F}, d_{1}^{x}, \varepsilon\right)\right)}{n}} \\
& \leq \inf _{\varepsilon} \varepsilon+\sqrt{\frac{2 \varepsilon^{-1} \log n+2 \log 2}{n}}
\end{aligned}
$$

Setting the two terms equal, to optimize over ε (in asymptotics), we have

$$
\varepsilon^{3 / 2}=\sqrt{\frac{2 \log n+2 \varepsilon \log 2}{n}} \approx \sqrt{\frac{2 \log n}{n}}
$$

for a bound of

$$
\mathcal{R}_{n} \lesssim\left(\frac{\log n}{n}\right)^{1 / 3}
$$

which is strictly weaker than the chaining bound.

4. Problem 4

(1) We adapt the proof from class to the case of a penalized, rather than constrained, norm.

Let \bar{W}_{n} be the span of the functions $k\left(x_{i},-\right)$. We can decompose any function g uniquely as $g=g_{n}+g^{\perp}$, where $g_{n} \in \bar{W}_{n}$ and $g^{\perp} \perp \bar{W}_{n}$. As in class, $g^{\perp}\left(x_{i}\right)=\left\langle g^{\perp}, k\left(x_{i},-\right)\right\rangle=0$, so that $g\left(x_{i}\right)=g_{n}\left(x_{i}\right)$.

Plugging in to the objective function:

$$
\psi(\mathbf{Y}-\mathrm{g})+\mu\|g\|_{W}^{2}=\psi\left(\mathbf{Y}-\mathrm{g}_{n}\right)+\mu\left\|g_{n}\right\|_{W}^{2}+\mu\left\|g^{\perp}\right\|_{W}^{2}
$$

For any fixed g_{n}, this is a constant plus $\mu\left\|g^{\perp}\right\|_{W}^{2}$, which is minimized uniquely at $g^{\perp}=0$. Thus (unfixing g_{n}) any minimizer \hat{f} must lie in \bar{W}_{n}, as desired.
(2) As $\hat{f} \in \bar{W}_{n}$, write $\hat{f}=\sum_{i=1}^{n} \theta_{i} k\left(x_{i},-\right)$, so that $\hat{\mathbf{f}}=K \theta$ and $\|\hat{f}\|_{W}^{2}=\theta^{\top} K \theta$. Then the first-order optimality conditions read

$$
\begin{aligned}
0 & =\nabla\left(\phi(\mathbf{Y}-\hat{\mathbf{f}})+\mu\|\hat{f}\|_{W}^{2}\right) \\
& =\nabla\left(\mathbf{Y}^{\top} \Sigma^{-1 / 2} \mathbf{Y}-2 \mathbf{Y}^{\top} \Sigma^{-1 / 2} K \theta+\theta^{\top} K \Sigma^{-1 / 2} K \theta+\mu \theta^{\top} K \theta\right) \\
& =-2 K \Sigma^{-1 / 2} \mathbf{Y}+2 K \Sigma^{-1 / 2} K \theta+2 \mu K \theta
\end{aligned}
$$

Rearranging, and recalling that $K \theta=\hat{\mathbf{f}}$, we have

$$
\left(K \Sigma^{-1 / 2}+\mu I_{n}\right) \hat{\mathrm{f}}=K \Sigma^{-1 / 2} \mathbf{Y}
$$

as desired.
(3) As above, it suffices to consider $f, g \in \bar{W}_{n}$, so that we can write $\mathrm{f}=K \theta_{f}, \mathrm{~g}=K \theta_{g}$. From the definition of \hat{f}, we have

$$
\psi(\mathbf{f}+\xi-\hat{\mathbf{f}})+\mu\|\hat{f}\|_{W}^{2} \leq \psi(\mathbf{f}+\xi-\mathrm{g})+\mu\|g\|_{W}^{2}
$$

Separating out the contribution of ξ, we obtain
$\psi(\mathbf{f}-\hat{\mathbf{f}})+\phi(\xi)+\xi^{\top} \Sigma^{-1 / 2}(\mathbf{f}-\hat{\mathbf{f}})+\mu\|\hat{f}\|_{W}^{2} \leq \psi(\mathbf{f}-\mathrm{g})+\psi(\xi)+\xi^{\top} \Sigma^{-1 / 2}(\mathbf{f}-\mathbf{g})+\mu\|g\|_{W}^{2}$.
Rearranging,

$$
\begin{aligned}
\psi(\mathbf{f}-\hat{\mathbf{f}}) & \leq-\xi^{\top} \Sigma^{-1 / 2}(\mathbf{f}-\hat{\mathbf{f}})-\mu\|\hat{f}\|_{W}^{2}+\psi(\mathbf{f}-\mathbf{g})+\xi^{\top} \Sigma^{-1 / 2}(\mathbf{f}-\mathbf{g})+\mu\|g\|_{W}^{2} \\
& =\psi(\mathbf{f}-\mathbf{g})+2 \mu\|g\|_{W}^{2}+\xi^{\top} \Sigma^{-1 / 2}(\hat{\mathbf{f}}-\mathbf{g})-\mu\|\hat{f}\|_{W}^{2}-\mu\|g\|_{W}^{2} \\
& \leq \psi(\mathbf{f}-\mathrm{g})+2 \mu\|g\|_{W}^{2}+\xi^{\top} \Sigma^{-1 / 2}(\hat{\mathbf{f}}-\mathbf{g})-\frac{\mu}{2}\|\hat{f}-g\|_{W}^{2}
\end{aligned}
$$

by the inequality $\|a-b\|_{W}^{2} \leq 2\|a\|_{W}^{2}+2\|b\|_{W}^{2}$. Let $Z=\Sigma^{-1 / 2} \xi$, which is distributed as $\mathcal{N}(0, I)$. Continuing the line of algebra,

$$
\begin{aligned}
\psi(\mathbf{f}-\hat{\mathbf{f}}) & \leq \psi(\mathbf{f}-\mathrm{g})+2 \mu\|g\|_{W}^{2}+Z^{\top}(\hat{\mathbf{f}}-\mathrm{g})-\frac{\mu}{2}\|\hat{f}-g\|_{W}^{2} \\
& =\psi(\mathbf{f}-\mathrm{g})+2 \mu\|g\|_{W}^{2}+Z^{\top} K\left(\theta_{\hat{f}}-\theta_{g}\right)-\frac{\mu}{2}\left(\theta_{\hat{f}}-\theta_{g}\right)^{\top} K\left(\theta_{\hat{f}}-\theta_{g}\right) \\
& \leq \psi(\mathbf{f}-\mathrm{g})+2 \mu\|g\|_{W}^{2}+\frac{1}{\mu} Z^{\top} K Z
\end{aligned}
$$

by the inequality

$$
a^{\top} P b \leq \frac{\mu}{2} a^{\top} P a+\frac{1}{\mu} b^{\top} P b
$$

for any PSD matrix P. Now since

$$
Z^{\top} K Z=\sum_{i, j=1}^{n} Z_{i}\left\langle k\left(x_{i},-\right), k\left(x_{j},-\right)\right\rangle_{W}=\left\|\sum_{i=1}^{n} Z_{i} k\left(x_{i},-\right)\right\|_{W}^{2}
$$

we conclude by taking the infimum over $g \in \bar{W}_{n}$, which equals the infimum over $g \in W$.
(4) This follows from the previous part together with the observation

$$
\mathbb{E}\left\|\sum_{i=1}^{n} Z_{i} k\left(x_{i},-\right)\right\|_{W}^{2}=\mathbb{E}\left[\sum_{i, j} Z_{i} Z_{j} K_{i j}\right]=\sum_{i=1}^{n} \mathbb{E}\left[Z_{i}^{2}\right] K_{i i}=\operatorname{Tr}(K)
$$

(5) It is sufficient to prove the bound for $f \in \bar{W}_{n}$, since only its evaluations at the design points matter. For the Gaussian kernel we have $k(x, x)=1$, so that $\operatorname{Tr}(K)=n$. Applying the previous part, and taking the case $g=f$ as an upper bound on the minimizer, we have

$$
\mathbb{E}[\psi(\mathbf{f}-\hat{\mathbf{f}})] \leq \psi(\mathbf{f}-\mathbf{f})+2 \mu\|f\|_{W}^{2}+\frac{n}{\mu}=2 \mu\|f\|_{W}^{2}+\frac{n}{\mu}
$$

Taking $\mu=\|f\|_{W} \sqrt{n / 2}$ gives the result.

MIT OpenCourseWare
http://ocw.mit.edu

18.657 Mathematics of Machine Learning

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

