
18.657. Fall 2105

Rigollet October 18, 2015

Problem set #2 (due Wed., October 21)

Should be typed in LAT XE

Problem 1. Rademacher Complexities and beyond

Let F be a class of functions from X to IR and let X1, . . . , Xn be iid copies of a
random variable X ∈ X . Moreover, let σ1, . . . , σn be n i.i.d. Rad(1/2) random variables
and let g1, . . . , gn be n i.i.d. N(0, 1). Assume that all these random variables are mutually
independent.

1. Prove the desymmetrization inequality :
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2. Prove the Rademacher/Gaussian process comparison inequality
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3. Let h ∈ IRX be a given function and define F + h = {f + h : f ∈ F}. Show that

h ∞
Rn(F + {h}) ≤ Rn(F) +

‖ ‖√ ,
n

where ‖h‖∞ = supx∈X |h(x)|.

4. Let F1, . . . ,Fk be k sets of functions from X to IR. Show that

k

Rn(F1 + · · · ,Fk) ≤
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Rn(
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Fj) .

5. Show that this inequality derived in 4. is in fact an equality when the Fjs are the
same.
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Problem 2. Covering and packing

Definition: A set P ⊂ T is called an ε-packing of the metric space (T, d) if d(f, g) > ε
for every f, g ∈ P , f 6= g. The largest cardinality of an ε-packing of (T, d) is called
the packing number of (T, d):

D(T, d, ε) = sup
{

card(P ) : P is an ε packing of (T, d)
}

Recall that N(T, d, ε) denotes the ε-covering number of (T, d).

1. Show that
D(T, d, 2ε) ≤ N(T, d, ε) ≤ D(T, d, ε)

Let M be an n ×m random matrix with entries that are i.i.d Rad(1/2) entries. We
are interested in its operator norm

‖M‖ = sup u⊤Mv .
u∈IRn

: |u|2≤1

v∈IRm : |v|2≤1

2. Show that
‖M‖ ≤ 2 max u⊤Mv ,

u∈Nn

v∈Nm

where Nn and Nm are 1-nets of the unit Euclidean balls of IRn and IRm
4

respectively.
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Problem 3. Chaining

Let F be the class of all nondecreasing functions from [0, 1] to [0, 1].

1. Show that for any x = (x1, . . . , xn) ∈ [0, 1]n, the covering number of (F , dx∞) satisfy:

N(F , dx 2

∞, ε) ≤ n /ε .

2. Using the chaining bound, show that
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√

log n

n
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3. Show that there is indeed a strict improvement over the bound obtained using the
theorem in section 5.2.1

Problem 4. Kernel ridge regression

Consider the regression model:

Yi = f(xi) + ξi, , i = 1, . . . , n

where x1, . . . , xn are fixed design points in IRd, ξ = (ξ1, . . . , ξ
n

n) ∼ N (0,Σ) ∈ IR with
known covariance matrix Σ ≻ 0 and f : IRd → IR is an unknown regression function.

Let W be an RKHS on IRd with reproducing kernel k. Define Y = (Y1, . . . , Yn)
⊤ and

g ˆ= [g(x1), . . . , g(xn)]
⊤ for any function g. Define the estimator f of f by

f̂ = argmin
{

ψ(Y g
g∈W

− ) + µ‖g‖2W
}

where ‖ · ‖W denotes the Hilbert norm on W , ψ(x) = x⊤Σ−1/2x and µ > 0 is a tuning
parameter to be chosen later.

1. Prove the representer theorem, i.e., that there exists a vector θ ∈ IRn such that

n
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∈ IRd

ˆ ˆ2. Prove that the vector f̂ = [f(x1), . . . , f(x
⊤
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(KΣ−1/2 + µIn)
−1/2f̂ = KΣ Y ,

where In is the identity matrix of IRn and K denotes the symmetric n × n matrix
with elements Ki,j = k(xi, xj).

3. Prove that the following inequality holds
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where Z1, . . . , Zn are iid N (0, 1).

4. Conclude that

1
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{
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}

+ Tr(K) ,
µ

where Tr(K) denotes the trace of K.
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5. Assume now that k is the Gaussian kernel:

k(x, x′) = e−|x−x′|2
2

Show that there exists a choice of µ for which

IEψ(f− f̂) 2
√

≤ ‖f‖W 2n .
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