18.657. Fall 2105

Problem set \#2 (due Wed., October 21)
Should be typed in ETEX

Problem 1. Rademacher Complexities and beyond

Let \mathcal{F} be a class of functions from \mathcal{X} to \mathbb{R} and let X_{1}, \ldots, X_{n} be iid copies of a random variable $X \in \mathcal{X}$. Moreover, let $\sigma_{1}, \ldots, \sigma_{n}$ be n i.i.d. $\operatorname{Rad}(1 / 2)$ random variables and let g_{1}, \ldots, g_{n} be n i.i.d. $N(0,1)$. Assume that all these random variables are mutually independent.

1. Prove the desymmetrization inequality:

$$
\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left[f\left(X_{i}\right)-\mathbb{E}[f(X)]\right]\right|\right] \leq 2 \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n}\left[f\left(X_{i}\right)-\mathbb{E}[f(X)]\right]\right|\right]
$$

2. Prove the Rademacher/Gaussian process comparison inequality

$$
\mathbb{E}\left[\sup _{f \in \mathcal{F}} \sum_{i=1}^{n} \sigma_{i} f\left(X_{i}\right)\right] \leq \sqrt{\frac{\pi}{2}} \mathbb{E}\left[\sup _{f \in \mathcal{F}} \sum_{i=1}^{n} g_{i} f\left(X_{i}\right)\right]
$$

Define $R_{n}(\mathcal{F})=\mathbb{E}\left[\sup _{f \in \mathcal{F}} \frac{1}{n}\left|\sum_{i=1}^{n} \sigma_{i} f\left(X_{i}\right)\right|\right]$. Let \mathcal{F} and \mathcal{G} be two set of functions from \mathcal{X} to \mathbb{R} and recall that $\mathcal{F}+\mathcal{G}=\{f+g: f \in \mathcal{F}, g \in \mathcal{G}\}$.
3. Let $h \in \mathbb{R}^{\mathcal{X}}$ be a given function and define $\mathcal{F}+h=\{f+h: f \in \mathcal{F}\}$. Show that

$$
R_{n}(\mathcal{F}+\{h\}) \leq R_{n}(\mathcal{F})+\frac{\|h\|_{\infty}}{\sqrt{n}},
$$

where $\|h\|_{\infty}=\sup _{x \in \mathcal{X}}|h(x)|$.
4. Let $\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}$ be k sets of functions from \mathcal{X} to \mathbb{R}. Show that

$$
R_{n}\left(\mathcal{F}_{1}+\cdots, \mathcal{F}_{k}\right) \leq \sum_{j=1}^{k} R_{n}\left(\mathcal{F}_{j}\right) .
$$

5. Show that this inequality derived in 4 . is in fact an equality when the $\mathcal{F}_{j} \mathrm{~s}$ are the same.

Problem 2. Covering and packing

Definition: A set $P \subset T$ is called an ε-packing of the metric space (T, d) if $d(f, g)>\varepsilon$ for every $f, g \in P, f \neq g$. The largest cardinality of an ε-packing of (T, d) is called the packing number of (T, d) :

$$
D(T, d, \varepsilon)=\sup \{\operatorname{card}(P): P \text { is an } \varepsilon \text { packing of }(T, d)\}
$$

Recall that $N(T, d, \varepsilon)$ denotes the ε-covering number of (T, d).

1. Show that

$$
D(T, d, 2 \varepsilon) \leq N(T, d, \varepsilon) \leq D(T, d, \varepsilon)
$$

Let M be an $n \times m$ random matrix with entries that are i.i.d $\operatorname{Rad}(1 / 2)$ entries. We are interested in its operator norm

$$
\|M\|=\sup _{\substack{u \in \mathbf{R}^{n}:\left|u_{2} \leq 1 \\ v \in \mathbf{R}^{m}:|v|_{2} \leq 1\right.}} u^{\top} M v
$$

2. Show that

$$
\|M\| \leq 2 \max _{\substack{u \in N_{n} \\ v \in N_{m}}} u^{\top} M v
$$

where N_{n} and N_{m} are $\frac{1}{4}$-nets of the unit Euclidean balls of \mathbb{R}^{n} and \mathbb{R}^{m} respectively.
3. Conclude that

$$
\mathbb{E}\|M\| \leq C(\sqrt{m}+\sqrt{n})
$$

Problem 3. Chaining

Let \mathcal{F} be the class of all nondecreasing functions from $[0,1]$ to $[0,1]$.

1. Show that for any $x=\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$, the covering number of $\left(\mathcal{F}, d_{\infty}^{x}\right)$ satisfy:

$$
N\left(\mathcal{F}, d_{\infty}^{x}, \varepsilon\right) \leq n^{2 / \varepsilon}
$$

2. Using the chaining bound, show that

$$
\mathcal{R}_{n}(\mathcal{F}) \leq C \sqrt{\frac{\log n}{n}}
$$

3. Show that there is indeed a strict improvement over the bound obtained using the theorem in section 5.2.1

Problem 4. Kernel ridge regression

Consider the regression model:

$$
Y_{i}=f\left(x_{i}\right)+\xi_{i}, \quad, i=1, \ldots, n
$$

where x_{1}, \ldots, x_{n} are fixed design points in $\mathbb{R}^{d}, \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \sim \mathcal{N}(0, \Sigma) \in \mathbb{R}^{n}$ with known covariance matrix $\Sigma \succ 0$ and $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is an unknown regression function.

Let W be an RKHS on \mathbb{R}^{d} with reproducing kernel k. Define $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ and $\mathrm{g}=\left[g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right]^{\top}$ for any function g. Define the estimator \hat{f} of f by

$$
\hat{f}=\underset{g \in W}{\operatorname{argmin}}\left\{\psi(\mathbf{Y}-\mathbf{g})+\mu\|g\|_{W}^{2}\right\}
$$

where $\|\cdot\|_{W}$ denotes the Hilbert norm on $W, \psi(\mathbf{x})=\mathbf{x}^{\top} \Sigma^{-1 / 2} \mathbf{x}$ and $\mu>0$ is a tuning parameter to be chosen later.

1. Prove the representer theorem, i.e., that there exists a vector $\theta \in \mathbb{R}^{n}$ such that

$$
\hat{f}(x)=\sum_{i=1}^{n} \theta_{i} k\left(x_{i}, x\right), \quad \text { for any } x \in \mathbb{R}^{d}
$$

2. Prove that the vector $\hat{\mathrm{f}}=\left[\hat{f}\left(x_{1}\right), \ldots, \hat{f}\left(x_{n}\right)\right]^{\top}$ satisfies

$$
\left(K \Sigma^{-1 / 2}+\mu I_{n}\right) \hat{\mathrm{f}}=K \Sigma^{-1 / 2} \mathbf{Y}
$$

where I_{n} is the identity matrix of \mathbb{R}^{n} and K denotes the symmetric $n \times n$ matrix with elements $K_{i, j}=k\left(x_{i}, x_{j}\right)$.
3. Prove that the following inequality holds

$$
\psi(\mathrm{f}-\hat{\mathrm{f}}) \leq \inf _{g \in W}\left\{\psi(\mathrm{f}-\mathrm{g})+2 \mu\|g\|_{W}^{2}\right\}+\frac{1}{\mu}\left\|\sum_{i=1}^{n} Z_{i} k\left(x_{i}, \cdot\right)\right\|_{W}^{2}
$$

where Z_{1}, \ldots, Z_{n} are iid $\mathcal{N}(0,1)$.
4. Conclude that

$$
\mathbb{E} \psi(\mathrm{f}-\hat{\mathrm{f}}) \leq \inf _{g \in W}\left\{\psi(\mathrm{f}-\mathrm{g})+2 \mu\|g\|_{W}^{2}\right\}+\frac{1}{\mu} \operatorname{Tr}(K)
$$

where $\operatorname{Tr}(K)$ denotes the trace of K.
5. Assume now that k is the Gaussian kernel:

$$
k\left(x, x^{\prime}\right)=e^{-\left|x-x^{\prime}\right|_{2}^{2}}
$$

Show that there exists a choice of μ for which

$$
\mathbb{E} \psi(\mathrm{f}-\hat{\mathrm{f}}) \leq 2\|f\|_{W} \sqrt{2 n} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.657 Mathematics of Machine Learning

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

