18.657. Fall 2105 Rigollet

October 18, 2015

Problem set #2 (due Wed., October 21)

SHOULD BE TYPED IN LATEX

Problem 1. Rademacher Complexities and beyond

Let \mathcal{F} be a class of functions from \mathcal{X} to \mathbb{R} and let X_1, \ldots, X_n be iid copies of a random variable $X \in \mathcal{X}$. Moreover, let $\sigma_1, \ldots, \sigma_n$ be n i.i.d. $\mathsf{Rad}(1/2)$ random variables and let g_1, \ldots, g_n be n i.i.d. N(0,1). Assume that all these random variables are mutually independent.

1. Prove the desymmetrization inequality:

$$\mathbb{E}\Big[\sup_{f\in\mathcal{F}}\Big|\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}\big[f(X_{i})-\mathbb{E}[f(X)]\big]\Big|\Big] \leq 2\mathbb{E}\Big[\sup_{f\in\mathcal{F}}\Big|\frac{1}{n}\sum_{i=1}^{n}\big[f(X_{i})-\mathbb{E}[f(X)]\big]\Big|\Big]$$

2. Prove the Rademacher/Gaussian process comparison inequality

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}\sigma_{i}f(X_{i})\right] \leq \sqrt{\frac{\pi}{2}}\mathbb{E}\left[\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}g_{i}f(X_{i})\right]$$

Define $R_n(\mathcal{F}) = \mathbb{E}\left[\sup_{f \in \mathcal{F}} \frac{1}{n} \Big| \sum_{i=1}^n \sigma_i f(X_i) \Big|\right]$. Let \mathcal{F} and \mathcal{G} be two set of functions from \mathcal{X} to \mathbb{R} and recall that $\mathcal{F} + \mathcal{G} = \{f + g : f \in \mathcal{F}, g \in \mathcal{G}\}$.

3. Let $h \in \mathbb{R}^{\mathcal{X}}$ be a given function and define $\mathcal{F} + h = \{f + h : f \in \mathcal{F}\}$. Show that

$$R_n(\mathcal{F} + \{h\}) \le R_n(\mathcal{F}) + \frac{\|h\|_{\infty}}{\sqrt{n}},$$

where $||h||_{\infty} = \sup_{x \in \mathcal{X}} |h(x)|$.

4. Let $\mathcal{F}_1, \ldots, \mathcal{F}_k$ be k sets of functions from \mathcal{X} to \mathbb{R} . Show that

$$R_n(\mathcal{F}_1 + \cdots, \mathcal{F}_k) \leq \sum_{j=1}^k R_n(\mathcal{F}_j).$$

5. Show that this inequality derived in 4. is in fact an equality when the \mathcal{F}_j s are the same.

Problem 2. Covering and packing

Definition: A set $P \subset T$ is called an ε -packing of the metric space (T, d) if $d(f, g) > \varepsilon$ for every $f, g \in P$, $f \neq g$. The largest cardinality of an ε -packing of (T, d) is called the packing number of (T, d):

$$D(T, d, \varepsilon) = \sup \{ \operatorname{card}(P) : P \text{ is an } \varepsilon \text{ packing of } (T, d) \}$$

Recall that $N(T, d, \varepsilon)$ denotes the ε -covering number of (T, d).

1. Show that

$$D(T, d, 2\varepsilon) \le N(T, d, \varepsilon) \le D(T, d, \varepsilon)$$

Let M be an $n \times m$ random matrix with entries that are i.i.d $\mathsf{Rad}(1/2)$ entries. We are interested in its operator norm

$$||M|| = \sup_{\substack{u \in \mathbb{R}^n : |u|_2 \le 1 \\ v \in \mathbb{R}^m : |v|_2 \le 1}} u^\top M v.$$

2. Show that

$$||M|| \le 2 \max_{\substack{u \in N_n \\ v \in N_m}} u^\top M v \,,$$

where N_n and N_m are $\frac{1}{4}$ -nets of the unit Euclidean balls of \mathbb{R}^n and \mathbb{R}^m respectively.

3. Conclude that

$$\mathbb{E}||M|| \le C(\sqrt{m} + \sqrt{n}).$$

Problem 3. Chaining

Let \mathcal{F} be the class of all nondecreasing functions from [0,1] to [0,1].

1. Show that for any $x = (x_1, \dots, x_n) \in [0, 1]^n$, the covering number of $(\mathcal{F}, d_{\infty}^x)$ satisfy:

$$N(\mathcal{F}, d_{\infty}^x, \varepsilon) \le n^{2/\varepsilon}$$
.

2. Using the chaining bound, show that

$$\mathcal{R}_n(\mathcal{F}) \le C\sqrt{\frac{\log n}{n}}$$

3. Show that there is indeed a strict improvement over the bound obtained using the theorem in section 5.2.1

Problem 4. Kernel ridge regression

Consider the regression model:

$$Y_i = f(x_i) + \xi_i, \quad , i = 1, \dots, n$$

where x_1, \ldots, x_n are fixed design points in \mathbb{R}^d , $\xi = (\xi_1, \ldots, \xi_n) \sim \mathcal{N}(0, \Sigma) \in \mathbb{R}^n$ with known covariance matrix $\Sigma \succ 0$ and $f : \mathbb{R}^d \to \mathbb{R}$ is an unknown regression function.

Let W be an RKHS on \mathbb{R}^d with reproducing kernel k. Define $\mathbf{Y} = (Y_1, \dots, Y_n)^{\top}$ and $\mathbf{g} = [g(x_1), \dots, g(x_n)]^{\top}$ for any function g. Define the estimator \hat{f} of f by

$$\hat{f} = \operatorname*{argmin}_{g \in W} \left\{ \psi(\mathbf{Y} - \mathbf{g}) + \mu \|g\|_W^2 \right\}$$

where $\|\cdot\|_W$ denotes the Hilbert norm on W, $\psi(\mathbf{x}) = \mathbf{x}^{\top} \Sigma^{-1/2} \mathbf{x}$ and $\mu > 0$ is a tuning parameter to be chosen later.

1. Prove the representer theorem, i.e., that there exists a vector $\theta \in \mathbb{R}^n$ such that

$$\hat{f}(x) = \sum_{i=1}^{n} \theta_i k(x_i, x), \quad \text{for any } x \in \mathbb{R}^d$$

2. Prove that the vector $\hat{\mathbf{f}} = [\hat{f}(x_1), \dots, \hat{f}(x_n)]^{\top}$ satisfies

$$(K\Sigma^{-1/2} + \mu I_n)\hat{\mathbf{f}} = K\Sigma^{-1/2}\mathbf{Y},$$

where I_n is the identity matrix of \mathbb{R}^n and K denotes the symmetric $n \times n$ matrix with elements $K_{i,j} = k(x_i, x_j)$.

3. Prove that the following inequality holds

$$\psi(\mathbf{f} - \hat{\mathbf{f}}) \le \inf_{g \in W} \left\{ \psi(\mathbf{f} - \mathbf{g}) + 2\mu \|g\|_W^2 \right\} + \frac{1}{\mu} \|\sum_{i=1}^n Z_i k(x_i, \cdot)\|_W^2,$$

where Z_1, \ldots, Z_n are iid $\mathcal{N}(0, 1)$.

4. Conclude that

$$\mathbb{E}\psi(\mathbf{f} - \hat{\mathbf{f}}) \le \inf_{g \in W} \left\{ \psi(\mathbf{f} - \mathbf{g}) + 2\mu \|g\|_W^2 \right\} + \frac{1}{\mu} \mathbf{Tr}(K),$$

where $\mathbf{Tr}(K)$ denotes the trace of K.

5. Assume now that k is the Gaussian kernel:

$$k(x, x') = e^{-|x-x'|_2^2}$$

Show that there exists a choice of μ for which

$$\mathbb{E}\psi(\mathbf{f} - \hat{\mathbf{f}}) \le 2\|f\|_W \sqrt{2n}.$$

MIT OpenCourseWare http://ocw.mit.edu

18.657 Mathematics of Machine Learning Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.