
18.657 PS 1 SOLUTIONS

1. Problem 1

(1) We expand in terms of conditional probabilities:

P(X ∈ U) = P(X ∈ U | Y = 0)P(Y = 0) + P(X ∈ U | Y = 1)P(Y = 1)

= π0 P(X ∈ U | Y = 0) + π1 P(X ∈ U | Y = 1).

Passing to densities:

pX = π0 pX|Y=0 + π1 pX|Y=1
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(2) By Bayes’ rule, we have P(Y = y | X = x) ∝ pX Y=y(x)P(Y = y). Thus, given X = x, the|
value of the Bayes classifier is 0 if

π0pX|Y=0 > π1pX|Y=1,

and is otherwise 1. Cancelling (2π)−d/2(det Σ)−1/2 on both sides, and taking logs, the in-
equality reads

1
log π0 −

1
(x

2
− µ0)>Σ−1(x− µ0) > log π1 − (x− µ1)>Σ−1(x

2
− µ1).

This asks whether x is at least log π0− log π1 units closer to µ0 than µ1, in distance measured
by the quadratic form 1Σ−1. By the PSD assumption, this distance matches Euclidean2

distance after a linear transformation (given by the Cholesky factorization of Σ−1). Then,
geometrically, the boundary forms a hyperplane, and the two regions {h∗ = 0} and {h∗ = 1}
form half-spaces.

(3) The inequality defining the Bayes classifier remains quadratic in x, so the hypersurface sepa-
rating {h∗ = 0} from {h∗ = 1} is a quadric. For example, with
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separating curve is a hyperbola.
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2. Problem 2

(1) We see that C can shatter 2d + 1 points on a circle: proceeding clockwise around the circle,
we pass a line from last of each run of consecutive ‘included’ points to start of the next such
run, for a total of at most d lines, and define our polygon by these lines (which extend beyond
their defining points).

Suppose we have 2d + 2 points. If any point is in the convex hull of the others, then C
fails to shatter: any set in C is convex, and thus can not include the extreme points while
excluding an interior point. Otherwise, number the points in their clockwise order as vertices
of the convex hull, and consider an alternating sign pattern. In order to shatter, there must
be a face of the polygon from C passing between each excluded point and its two included
neighbors; these d+ 1 faces must all be distinct, or else we could show that the given points
violated our convexity assumption; but no convex polygon with d vertices has more than d
faces, a contradiction. So C can not shatter 2d+ 2 points.

(2) The convex compact sets include in particular the convex polygons of the previous section,
which we see can shatter any number of points (once we allow arbitrarily many polygon
vertices). Thus the VC dimension is infinite.

(3) We know that C shatters some n = VC(C) points. Then some set in
n

C achieves each of the 2n

inclusion patterns. In particular there exist at least 2 sets in C. So n ≤ log2(card C).

(4) On the space R, the class of intervals (−∞, t] for t ∈ R is infinite. This class certainly shatters
the point 0 (the intervals (−∞,−1] and (−∞, 0] suffice), while it fails to shatter any two
points a < b, since no such interval contains b but not a. Thus the VC dimension is 1.
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3. Problem 3

(1) We begin by computing mean and variance:∑n ∑n1 1
E ˆ[Fn(t)] = P(Xi ≤ t) = F (t) = F (t),

n n
i=1 i=1

n
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n2

∑
Var[1(Xi

i=1

≤ t)]

1
= Var[1(X1
n

≤ t)]

1 1
= (E[1(X1 ≤ t)2]− E[1(X 2

1 ≤ t)] ) = (F (t)
n n

− F (t)2).

ˆLet ε > 0 be given. As the Fn(t) are averages of independent 0–1 random variables, we can
apply Hoeffding’s inequality:

P ˆ(|Fn(t)− F (t)| ≥ ε) ≤ 2 exp(−2nε2),∑∞ ∞
2

P(|F̂n(t)− F (t)| ≥ ε) ≤
∑

2 exp(−2nε) = < ,
1 2

=1 n=1
− exp(

n
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∞

ˆso that by Borel–Cantelli, almost surely only finitely many of the events |Fn(t) − F (t)| ≥ ε
occur. Thus Fn(t) F (t) almost surely.

ˆ
→

(Alternative: Fn(t) is an average of n iid samples of Bern(F (t)); the result follows from the
strong law of large numbers. Of course, the proof of that law uses Borel–Cantelli.)

(2) We can view this is a question of empirical measure versus true measure on the class C of
half-line intervals (∞, t], which have VC dimension 1 (see the solution to 2(d)). The VC
inequality now asserts that

sup |F̂n(t)− F (t) = sup µn(A) µ(A)
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for all n ≥ 2.
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4. Problem 4

(1) Changing the value Xi can only change Bn by at most 1: putting the ith item in a new bin
is always an option. Applying the bounded differences inequality yields exactly the result:

P(|Bn − EBn| > t) ≤ 2 exp(−2t2/n).

¯(2) (a) By the triangle inequality, changing Xi will change ‖X‖ by at most 2/n. By the (one-
sided) bounded differences inequality,

2t2
P(‖ ¯ ¯X E
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= 2
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)
exp(−nt /2).

n

(b) We apply Jensen’s inequality:

E ¯[‖X‖] ≤ E[‖X̄‖2]1/2(∑ )1/2d

¯= E[X(i)2] .
i=1

By the assumption E[X] = 0, the cross terms of the squared average will cancel in
expectation:

1
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n

Returning to our computation:

E[‖X̄‖] ≤

(∑d 1
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=
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(c) Combining (a) and (b), we have

P ¯(
√

‖X‖ ≥ t) ≤ exp((−n(t− 1/ n)2/2)
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√
n)2 + t

√
n

2
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2

)
.

The polynomial − 1x2 + x− 1 is bounded above by 1 − x2/4. Thus,2 2 2

P(‖X̄‖ ≥ t) ≤ e1/2 exp(−nt2/4) ≤ 2 exp(−nt2/4).

(3) Let σ1, . . . , σn be independent symmetric Rademacher random variables. By symmetry of
¯Xi, the distribution of X is the same as that of 〈σ,X〉/n. Conditioned on X, Hoeffding’s

inequality yields

P
(
〈σ,X〉√ > t

)
≤ exp(−nt2σ /2).
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By the law of total( probabilit) y,
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) (
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) /2
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