Problem set \#1 (due Wed., October 7)

Problem 1. Discriminant analysis

Let $(X, Y) \in \mathbb{R}^{d} \times\{0,1\}$ be a random pair such that $\mathbb{P}(Y=k)=\pi_{k}>0\left(\pi_{0}+\pi_{1}=1\right)$ and the conditional distribution of X given Y is $X \mid Y \sim \mathcal{N}\left(\mu_{Y}, \Sigma_{Y}\right)$, where $\mu_{0} \neq \mu_{1} \in \mathbb{R}^{d}$ and $\Sigma_{0}, \Sigma_{1} \in \mathbb{R}^{d \times d}$ are mean vectors and covariance matrices respectively.

1. What is the (unconditional) density of X ?
2. Assume that $\Sigma_{0}=\Sigma_{1}=\Sigma$ is a positive definite matrix. Compute the Bayes classifier h^{*} as a function of $\mu_{0}, \mu_{1}, \pi_{0}, \pi_{1}$ and Σ. What is the nature of the sets $\left\{h^{*}=0\right\}$ and $\left\{h^{*}=1\right\}$?
3. Assume now that $\Sigma_{0} \neq \Sigma_{1}$ are two positive definite matrices. What is the nature of the sets $\left\{h^{*}=0\right\}$ and $\left\{h^{*}=1\right\}$?

Problem 2. VC dimensions

1. Let \mathcal{C} be the class of convex polygons in \mathbb{R}^{2} with d vertices. Show that $\operatorname{VC}(\mathcal{C})=$ $2 d+1$.
2. Let \mathcal{C} be the class of convex compact sets in \mathbb{R}^{2}. Show that $\operatorname{VC}(\mathcal{C})=\infty$.
3. Let \mathcal{C} be finite. Show that $\operatorname{VC}(\mathcal{C}) \leq \log _{2}(\operatorname{card} \mathcal{C})$.
4. Give an example of a class \mathcal{C} such that $\operatorname{card} \mathcal{C}=\infty$ and $\operatorname{VC}(\mathcal{C})=1$.

Problem 3. Glivenko-Cantelli Theorem

Let X_{1}, \ldots, X_{n} be n i.i.d copies of X that has cumulative distribution function (cdf) $F(t)=\mathbb{P}(X \leq t)$. The empirical cdf of X is defined by

$$
\hat{F}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(X_{i} \leq t\right)
$$

1. Compute the mean and the variance of $\hat{F}_{n}(t)$ and conclude that $\hat{F}_{n}(t) \rightarrow F(t)$ as $n \rightarrow \infty$ almost surely (hint: use Borel-Cantelli).
2. Show that for $n \geq 2$

$$
\sup _{t \in \mathbb{R}}\left|\hat{F}_{n}(t)-F(t)\right| \leq C \sqrt{\frac{\log (n / \delta)}{n}}
$$

with probability $1-\delta$.

Problem 4. Concentration

1. Let X_{1}, \ldots, X_{n} be n i.i.d copies of $X \in[0,1]$. Each X_{i} represents the size of a packages to be shipped. The shipping containers are bins of size 1 (so that each bin can hold a set of packages whose sizes sum to at most 1). Let B_{n} be the minimal number of bins needed to store the n packages. Show that

$$
\mathbb{P}\left(\left|B_{n}-\mathbb{E}\left[B_{n}\right]\right| \geq t\right) \leq 2 e^{-\frac{2 t^{2}}{n}}
$$

2. Let X_{1}, \ldots, X_{n} be n i.i.d copies of $X \in \mathbb{R}^{d}, \mathbb{E}[X]=0$ and assume that $\left\|X_{i}\right\| \leq 1$ almost surely for all i. Let \bar{X} denote the average of the X_{i} s. Prove the following inequalities (the constant C may change from one inequality to the other)
(a) $\mathbb{P}[\|\bar{X}\|-\mathbb{E}\|\bar{X}\| \geq t] \leq e^{-C n t^{2}}$,
(b) $\mathbb{E}\|\bar{X}\| \leq \frac{C}{\sqrt{n}}$,
(c) $\mathbb{P}[\|\bar{X}\| \geq t] \leq 2 e^{-C n t^{2}}$
3. Let X_{1}, \ldots, X_{n} be n iid random variables, i.e. such that X_{i} and $-X_{i}$ have the same distribution. Let \bar{X} denote the average of the $X_{i} \mathrm{~s}$ and $V=n^{-1} \sum_{i=1}^{n} X_{i}^{2}$. Show that

$$
\mathbb{P}\left[\frac{\bar{X}}{\sqrt{V}}>t\right] \leq e^{-\frac{n t^{2}}{2}}
$$

[Hint: introduce Rademacher random variables].

MIT OpenCourseWare
http://ocw.mit.edu

18.657 Mathematics of Machine Learning

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

