18.657. Fall 2105 Rigollet

September 27, 2015

Problem set #1 (due Wed., October 7)

Problem 1. Discriminant analysis

Let $(X, Y) \in \mathbb{R}^d \times \{0, 1\}$ be a random pair such that $\mathbb{P}(Y = k) = \pi_k > 0$ $(\pi_0 + \pi_1 = 1)$ and the conditional distribution of X given Y is $X|Y \sim \mathcal{N}(\mu_Y, \Sigma_Y)$, where $\mu_0 \neq \mu_1 \in \mathbb{R}^d$ and $\Sigma_0, \Sigma_1 \in \mathbb{R}^{d \times d}$ are mean vectors and covariance matrices respectively.

- 1. What is the (unconditional) density of X?
- 2. Assume that $\Sigma_0 = \Sigma_1 = \Sigma$ is a positive definite matrix. Compute the Bayes classifier h^* as a function of $\mu_0, \mu_1, \pi_0, \pi_1$ and Σ . What is the nature of the sets $\{h^* = 0\}$ and $\{h^* = 1\}$?
- 3. Assume now that $\Sigma_0 \neq \Sigma_1$ are two positive definite matrices. What is the nature of the sets $\{h^* = 0\}$ and $\{h^* = 1\}$?

Problem 2. VC dimensions

- 1. Let C be the class of convex polygons in \mathbb{R}^2 with d vertices. Show that VC(C) = 2d + 1.
- 2. Let \mathcal{C} be the class of convex compact sets in \mathbb{R}^2 . Show that $\mathsf{VC}(\mathcal{C}) = \infty$.
- 3. Let \mathcal{C} be finite. Show that $\mathsf{VC}(\mathcal{C}) \leq \log_2(\operatorname{card} \mathcal{C})$.
- 4. Give an example of a class C such that card $C = \infty$ and VC(C) = 1.

Problem 3. Glivenko-Cantelli Theorem

Let X_1, \ldots, X_n be *n* i.i.d copies of *X* that has cumulative distribution function (cdf) $F(t) = \mathbb{P}(X \leq t)$. The *empirical* cdf of *X* is defined by

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \le t).$$

1. Compute the mean and the variance of $\hat{F}_n(t)$ and conclude that $\hat{F}_n(t) \to F(t)$ as $n \to \infty$ almost surely (hint: use Borel-Cantelli).

2. Show that for $n \ge 2$

$$\sup_{t \in \mathbb{R}} \left| \hat{F}_n(t) - F(t) \right| \le C \sqrt{\frac{\log(n/\delta)}{n}}$$

with probability $1 - \delta$.

Problem 4. Concentration

1. Let X_1, \ldots, X_n be *n* i.i.d copies of $X \in [0, 1]$. Each X_i represents the size of a packages to be shipped. The shipping containers are bins of size 1 (so that each bin can hold a set of packages whose sizes sum to at most 1). Let B_n be the minimal number of bins needed to store the *n* packages. Show that

$$\mathbb{P}(|B_n - \mathbb{E}[B_n]| \ge t) \le 2e^{-\frac{2t^2}{n}}.$$

2. Let X_1, \ldots, X_n be *n* i.i.d copies of $X \in \mathbb{R}^d$, $\mathbb{E}[X] = 0$ and assume that $||X_i|| \le 1$ almost surely for all *i*. Let \overline{X} denote the average of the X_i s. Prove the following inequalities (the constant *C* may change from one inequality to the other)

(a)
$$\mathbb{P}\left[\left\|\bar{X}\right\| - \mathbb{E}\left\|\bar{X}\right\| \ge t\right] \le e^{-Cnt^2}, \quad (b) \mathbb{E}\left\|\bar{X}\right\| \le \frac{C}{\sqrt{n}}, \quad (c) \mathbb{P}\left[\left\|\bar{X}\right\| \ge t\right] \le 2e^{-Cnt^2}$$

3. Let X_1, \ldots, X_n be *n* iid random variables, i.e. such that X_i and $-X_i$ have the same distribution. Let \bar{X} denote the average of the X_i s and $V = n^{-1} \sum_{i=1}^n X_i^2$. Show that \bar{X}_i

$$\mathbb{P}\left[\frac{\bar{X}}{\sqrt{V}} > t\right] \le e^{-\frac{nt^2}{2}}.$$

[Hint: introduce Rademacher random variables].

18.657 Mathematics of Machine Learning Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.