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So welcome back. So we are now moving to a new chapter, which is going to have a little

more of a statistical flavor when it comes to designing methods, all right? Because if you think

about it, OK-- some of you have probably attempted problem number two in the problem set.

And you realize that maximum likelihood estimators does not give you super trivial estimators,

right? I mean, when you have an n theta theta, then the thing you get is not something you

could have guessed before you actually attempted to solve that problem. And so, in a way,

we've seen already sophisticated methods.

However, in many instances, the maximum likelihood estimator was just an average. And in a

way, even if we had this confirmation for maximum likelihood that indeed that was the

estimator that maximum likelihood would spit out, and that our intuition was therefore pretty

good, most of the statistical analysis or use of the central limit theorems, all these things

actually did not come in the building of estimator, in the design of the estimator, but really in

the analysis of the estimator. And you could say, well, if I know already that the best estimator

is the average, I'm just going to use the average. I don't have to, basically, quantify how good

it is. I just know it's the best I can do.

We're going to talk about tests. And we're going to talk about parametric hypothesis testing.

So you should view this as-- parametric means, well, it's about a parameter, like we did before.

And hypothesis testing is on the same level as estimation. And on the same level as estimator

will be the word "test," OK? And when we're going to devise a test, we're going to actually

need to understand random fluctuations that arise from the central limit theorem better, OK?

It's not just going to be in the analysis. It's also going to be in the design. And everything we've

been doing before in understanding the behavior of an estimator is actually going to come in

and be extremely useful in the actual design of tests, OK?

So as an example, I want to talk to you about some real data. I will not study this data. But this

data actually exist. You can find it on R. And so, it's the data from the so-called credit union

Cherry Blossom Run, which is a 10 mile race. It takes place every year in D.C. It seems that

some of the years are pretty nice.

In 2009, there were about 15,000 participants. Pretty big race. And the average running time

was 103.5 minutes, all right? So about an hour and a half or a little bit more.



And so, you can ask the following question, right? This is actual data, right? 103.5 actually

averaged the running time for all of 15,000. Now, this in practice, may not be something very

suitable. And you might want to just sample a few runners and try to understand how they're

behaving every year without having to collect the entire data set.

And so, you could ask the question, well, let's say my budget is to ask for maybe 10 runners

what their running time was. I still want to be able to determine whether they were running

faster in 2012 than in 2009. Why do I put 2012, and not 2016? Well, because the data set for

2012 is also available. So if you are interested and you know how to use R, just go and have

fun with it.

So to answer this question, what we do is we select n runners, right? So n is a moderate

number that's more manageable than 15,000. From the 2012 race at random. That's where

the random variable is going to come from, right? That's where we actually inject randomness

in our problem.

So remember this is an experience. So really in a way, the runners are the omegas. And I'm

interested in measurements on those guys. So this is how I have a random variable. And this

random verbal here is measuring their running time. OK. If you look at the data set, you have

all sorts of random variables you could measure about those random runners. Country of

origin. I don't know, height, age, a bunch of things. OK. Here, the random variable of interest

being the running time. OK. Everybody understand what the process is?

OK. So now I'm going to have to make some modeling assumptions. And here, I'm actually

pretty lucky. I actually have all the data from a past year. I mean, this is not the data from

2012, which I also have, but I don't use. But I can actually use past data to try to understand

what distribution do I have, right? I mean, after all, running time is going to be rounded to

something. Maybe I can think of it as a discrete random variable. Maybe I can think of it as the

exponential random variable. Those are positive numbers. I mean, there's many kind of

running times that could come up to mind. Many kind of distributions I could think of for this

modeling part.

But it turns out that if you actually plug the histogram of those running times for all 15,000

runners in 2009, you actually are pretty happy to see that it really looks like a bell-shaped

curve, which suggest that this should be a Gaussian. So what you go on to do is you estimate

the mean from past observations, which was actually 103.5, as we said. You submit the



variance, which was 373. And you just try to superimpose the curve with this one, which is a

Gaussian PDF with mean 103.5 and variants 373. And you see that they actually look very

much alike. And so here, you're pretty comfortable to say that the running time actually is

Gaussian distribution. All right?

So now I know that the x1 to xn, I'm going to say they're Gaussian, OK? I still need to specify

two parameters. So what I want to know is, is the distribution the same from past years, right?

So I want to know if the random variable that I'm looking for-- if I, say, pick one. Say, x1. Does

it have the same distribution in 2012 that it did in 2009? OK.

And so, the question is, is x1 has a Gaussian distribution with mean 103.5 and variance 373?

Is that clear? OK.

So this question that calls for a yes or no answer is a hypothesis testing problem. I am testing

a hypothesis. And this is the basis of basically all of data-driven scientific inquiry. You just ask

questions. You formulate a scientific hypothesis.

Knocking down this gene is going to cure melanoma, is this true? I'm going to collect. I'm

going to try. I'm to observe some patients on which I knock down this gene. I'm going to collect

some measurements. And I'm going to try to answer this yes/no question, OK? It's different

from the question, what is the mean running time for this year?

OK. So this hypothesis testing is testing if this hypothesis is true. The hypothesis in common

English we just said, were runners running faster? All right? Anybody could formulate this

hypothesis.

Now, you go to a statistician. And he's like, oh, what you're really asking me is x1 has a

Gaussian distribution with mean less than 103.5 and variance 373, right? That's really the

question that you ask in statistical terms. And so, if you're asking if this was the same as

before, there's many ways it could not be the same as before. There's basically three ways it

could not be the same as before.

It could be the case that x1 is in expectation to 103.5 So the expectation has changed. Or the

variance has changed. Or the distribution has changed. I mean, who knows? Maybe runners

are now just all running holding their hands. And it's like now a point mass at 1 given point.

OK. So you never know what could [INAUDIBLE]. Now of course, if you allow for any change,

you will find change. And so what you have to do is to factor in as much knowledge as you



can. Make as many modeling assumptions, so that you can let the data speak about your

particular question.

Here, your particular question is, are they running faster? So you're only really asking a

question about the expectation. You really want to know if the expectation has changed. So as

far as you're concerned, you're happy to make the assumption that the rest has been

unchanged. OK. And so, this is the question we're asking. Is the expectation now less than

103.5? Because you specifically asked whether runners were going faster this year, right?

They tend to go faster rather than slower, all right? OK. So this is the question we're asking in

mathematical terms.

So first, when I did that, I need to basically fix the rest. And fixing the rest is actually part of the

modeling assumptions. So I fixed my variance to be 373. OK? I assume that the variance has

not changed between 2009 and 2012. Now, this is an assumption. It turns out it's wrong. So if

you look at the data from 2012, this is not the correct assumption. But I'm just going to make it

right now for the sake of argument, OK? And also the fact that it's Gaussian.

Now, this is going to be hard to violate, right? I mean, where did this bell-shaped curve come

from? Well, it's just natural when you just measure a bunch of things. The central limit theorem

appears in the small things of nature. I mean, that's the bedtime story you get about the

central limit theorem. And that's why the bell-shaped curve is everywhere in nature. It's the

sum of little independent things that are going on. And this Gaussian assumption, even if I

wanted to relax it, there's not much else I can do. It is pretty robust across the years.

All right. So the only thing that we did not fix is the expectation of x1, which now I want to know

what it is. And since I don't know what it is, I'm going to call it mu. And it's going to be a

variable of interest, all right? So it's just a number mu. Whatever this is I can try to estimate it,

maybe using maximum likelihood estimation. Probably using the average, because this is

Gaussian. And we know that the maximum likelihood estimator for a Gaussian is just the

average. And now we only want to test if mu is equal to 103.5, like it was in 2009. Or on the

contrary, if mu is not equal to 103.5. And more specifically, if mu is actually strictly less than

103.5. That's the question you ask.

Now, why am I in writing mu equal to 103.5 or is less than 103.5 and equal to 103.5 versus not

equal to 103.5? It's because since you asked me a more precise question, I'm going to be

able to give you a more precise answer. And so, if your question is very specific-- are they



running faster? I'm going to factor that in what I write. If you just ask me, is it the same? I'm

going to have to write, or is it different than 103.5? And that's less information about what

you're looking for, OK?

So by making all these modeling assumptions-- the fact that the variance doesn't change, the

fact that it's still Gaussian-- I've actually reduced the number of. And I put numbers in quotes,

because this is still an infinite of them. But I'm limiting the number of ways the hypothesis can

be violated. The number of possible alternative realities for this hypothesis, all right?

For example, I'm saying there's no way mu can be larger than 103.5. I've already factored that

in, OK? It could be. But I'm actually just going to say that if it's larger, all I'm going to be able to

tell you is that it's not smaller. I'm not going to be able to tell you that it's actually larger, OK?

And the only way it can be rejected now. The only way I can reject my hypothesis is if x

belongs to very specific family of distributions. If it has a distribution which is Gaussian with

mean mu and variance of 373 for mu, which is less 103.5. All right?

So we started with basically was x1-- so that's the reality. x1 follows n 103.5 373, OK? And this

is everything else, right? So for example, here is x follows some exponential, 0.1, OK? This is

just another distribution here. Those are all the possible distributions.

What we said is we said, OK, first of all, let's just keep only those Gaussian distributions, right?

And second, we said, well, among those Gaussian distributions, let's only look at those that

have-- well, maybe this one should be at the boundary-- let's only look at the Gaussians here.

So this guy here are all the Gaussians with mean mu and variance 373 for mu less than 103.5,

OK?

So when you're going to give me data, I'm going to be able to say, well, am I this guy? Or am I

one of those guys? Rather than searching through everything. And the more you search the

easier for you to find something that fits better the data, right? And so, if I allow everything

possible, then there's going to be something that just by pure randomness is actually going to

look better for the data, OK?

So for example, if I draw 10 random variables, right? If n is equal to 10. And let's say they take

10 different values. Then it's actually more likely that those guys come from a discrete

distribution that takes each of these values with probability 1 over 10, than actually some

Gaussian random variable, right? That would be perfect. I can actually explain it.



If the 10 numbers I got were say-- let's say I collect 3, 90, 95, and 102. Then the most likely

distribution for those guys is the discrete distribution that takes three values, 91 with probability

1/3, 95 with probability 1/3, and 102 with probably 1/3, right? That's definitely the most likely

distribution for this. So if I allowed this, I would say, oh no. This is not distributed according to

that. It's distributed according to this very specific distribution, which is somewhere in the realm

of all possible distributions, OK?

So now we're just going to try to carve out all this stuff by making our assumptions. OK. So

here in this particular example, just make a mental note that what we're doing is that I actually-

- a little birdie told me that the reference number is 103.5, OK? That was the thing I'm actually

looking for. In practice, it's actually seldom the case that you have this reference for yourself to

think of, right? Maybe here, I just happen to have a full data set of all the runners of 2009. But

if I really just asked you, I said, were runners faster in 2012 than in 2009? Here's $10 to

perform your statistical analysis. What you're probably going to do is called maybe 10 runners

from 2012, maybe 15 runners from 2009, ask them and try to compare their mean. There's no

standard reference. You would not be able to come up with this 103.5, because these data

maybe is expensive to get or something.

OK. So this is really more of the standard case, all right? Where you really compare two things

with each other, but there's no actual ground truth number that you're comparing it to. OK. So

we'll come back to that in a second. I'll tell you what the other example looks like.

So let's just stick to this example. I tell you it's 103.5, OK? Let's try to have our intuition work

the same way. We said, well, averages worked well. The average, tell me, of over these 10

guys should tell me what the mean should be. So I can just say, well x bar is going to be close

to the true mean by the law of large number. So I'm going to decide whether x bar is less than

103.5. And conclude that in this case, indeed mu is less than 103.5, because those two

quantities are close, right? I could do that.

The problem is that this could go pretty wrong. Because if n is small, then I know that xn bar is

not equal to mu. I know that xn bar is close to mu. But I also know that there's pretty high

chance that it's not equal to mu. In particular, I know it's going to be somewhere at 1 over root

n away from mu, right? 1 over root n being the root coming from what? CLT, right? That's the

root n that comes from CLT. In blunt words, CLT tells me the mean is at distance 1 over root n

from the expectation, pretty much. That's what it's telling.



So 1 over root n. If I have 10 people in there, 1 over root 10 is not a huge number, right? It's

like 1/3 pretty much. So 1/3 103.5. If the true mean was actually 103.4, but my average was

telling me it's 103.4 plus 1/3, I would actually come to two different conclusions, right?

So let's say that mu is equal to 103.4, OK? So you're not supposed to know this, right? That's

the hidden truth. OK.

Now I have n is equal to 10. So I know that x bar n minus 103.4 is something of the order of 1

over the square root of 10, which is of the order of, say, 0.3. OK. So here, this is all hand

wavy, OK? But that's what the central limit theorem tells me.

What it means is that it is possible that x bar n is actually equal to is actually equal to 103.4

plus 0.3, which is equal to 103.7. Which means that while the truth is that mu is less than

103.5, then I would conclude that mu is larger than 103.5, OK? And that's because I have not

been very cautious, OK?

So what we want to do is to have a little buffer to account for the fact that xn bar is not a

precise value for the true mu. It's something that's 1 over root n away from you. And so, what

we want is the better heuristic that says, well, if I want to conclude that I'm less than 103.5,

maybe I need to be less than 103.5 minus a little buffer that goes to 0 as my sample size goes

to infinity. And actually, that's what the law of large number tells me. The central limit theorem

actually tells me that this should be true, something that goes to 0 as n goes to infinity and the

rate 1 over root n, right? That's basically what the central limit theorem tells me.

So to make this intuition more precise, we need to understand those fluctuations. We need to

actually put in something that's more precise than these little wiggles here, OK? We need to

actually have the central limit theorem come in.

So here is the example of comparing two groups. So pharmaceutical companies use

hypothesis testing to test if a drug is efficient, right? That's what they do. They want to know,

does my new drug work? And that's what the Federal Drug Administration office is doing on a

daily basis. They ask for extremely well regulated clinical trials on a thousand people, and

check, does this drug make a difference? Did everybody die? Does it make no difference?

Should people pay $200 for a pill of sugar, right? So that's what people are actually asking.

So to do so, of course, there is no ground truth about-- so there's actually a placebo effect. So

it's not like actually giving a drug that does not work is going to have no effect on patients. It



will have a small effect, but it's very hard to quantify. We know that it's there, but we don't

know what it is. And so rather than saying, oh the ground truth is no improvement, the ground

truth is the placebo effect. And we need to measure what the placebo effect is.

So what we're going to do is we're going to split our patients into two groups. And there's

going to be what's called a test group and a control group. So the word test here is used in a

different way than hypothesis testing. So we'll just call it typically the drug group. And so, I will

refer to mu drug for this guy, OK?

Now, this let's say this is a cough syrup, OK? And when you have a cough syrup, the way you

measure the efficacy of a cough syrup is to measure how many times you cough per minute,

OK? And so, if I define mu control the number of expectoration per hour. So just the expected

number, right? This is the number I don't know, because I don't have access to the entire

population of people that will ever take this cough syrup.

And so, I will call it mu control for the control group. So those are the people who have been

actually given just like sugar, like maple syrup. And mu drug are those people who are given

the actual syrup, OK? And you can imagine that maybe maple syrup will have an effect on

expectorations per hour just because, well, it's just sweet and it helps, OK? And so, we don't

know what this effect is going to be. We just want to measure if the drug is actually having just

a better impact on expectorations per hour than the just pure maple syrup, OK?

So what we want to know is if mu drug is less than mu control. That would be enough. If we

had access to all the populations that will ever take the syrup for all ages, then we would just

measure, did this have an impact? And even if it's a slightly ever so small impact, then it's

good to release this cough syrup, assuming that it has no side effects or anything like this,

because it's just better than maple syrup, OK? The problem is that we don't have access to

this. And we're going to have to make this decision based on samples that give me imprecise

knowledge about mu drug and mu control.

So in this case, unlike the first case where we compared an unknown expected value to have

a fixed number, which was one of the 103.5, here, we're just comparing two unknown

numbers with each other, OK? So there's two sources of randomness. Trying to estimate the

first one. And trying to estimate the second one.

Before I move on, I just wanted to tell you I apologize. One of the graders was not able to

finish grading his problem sets for today. So for those of you who are here just to pick up their



homework, feel free to leave now. Even if you have a name tag, I will pretend I did not read it.

OK. So I'm sorry. You'll get it on Tuesday. And this will not happen again. OK.

So for the clinical trials, now I'm going to collect information. I'm going to collect the data from

the control group. And I'm going to collect data from the test group, all right?

So my control group here. I don't have to collect the same number of people in the control

group than in the drug group. Actually, for cough syrup, maybe it's not that important. But you

can imagine that if you think you have the cure to a really annoying disease, it's actually hard

to tell half of the people you will get a pill of nothing, OK? People tend to want to try the drug.

They're desperate. And so, you have to have this sort of imbalance between who is getting the

drug and who's not getting the drug.

And people have to qualify for the clinical trials. There's lots of fluctuations that affect what the

final numbers of people who are actually going to get the drug and are going to get the control

is going to be. And so, it's not easy for you to make those two numbers equal. You'd like to

have those numbers equal if you can, but not necessarily. And by the way, this is all part of

some mystical science called "design of experiments." And in particular, you can imagine that

if one of the series had higher variants, you would want to like more people in this group than

the other group. Yeah?

STUDENT: So when we're subtracting [INAUDIBLE] something that [INAUDIBLE] 0 [INAUDIBLE] to be

satisfied. So that's on purpose [INAUDIBLE].

PROFESSOR: Yeah, that's on purpose. And I'll come to that in a second, all right? So basically, we're going

to make it if your answer is, is this true? We're going to make it as hard as possible, but no

harder for you to say yes to this answer. Because, well, we'll see why.

OK, so now we have two set of data, the x's and the y's. The x's are the ones for the drug. And

the y's are the data that I collected from the people, who were just given a placebo, OK? And

so, they're all IID random variables. And here, since it's the number of expectorations, I'm

making a blunt modeling assumption. I'm just going to say it's Poisson. And it's characterized

only by the mean mu drug or the mean mu control, OK? I've just made an assumption here. It

could be something different. But let's say it's a Poisson distribution.

So now what I want to know is to test whether mu drug is less than mu control. We said that

already. But the way we said it before was not as mathematical as it is now. Now we're actually



making a test on the parameters of Poisson distribution. Whereas before, we were just making

test on expected numbers, OK?

So the heuristic-- again, if we try to apply the heuristic now. Rather than comparing mu x bar

drug to some fixed number, I'm actually comparing x bar drug to some control. But now here, I

need to have something that accounts for, not only the fluctuations of x bar drug, but also for

the fluctuations of x bar control, OK? And so, now I need something that goes to 0 when all

those two things go to infinity. And typically, it should go to zero with 1 over root of n drug and

1 over square root of n control, OK? That's what the central limit theorem for both x bar drug

and x bar control. Two central limit theorems are actually telling. OK. And then we can

conclude that this happens.

And as you said, we're trying to make it a bit harder to conclude this. Because let's face it. If

we were actually using two simple heuristic, right? For simplicity, right? So I can rewrite x bar

drug less than x bar control minus this something that goes to 0. I can write it as x bar drug

minus x bar control less than something negative, OK? This little something, OK?

So now let's look at those guys. This is the difference of two random variables. From the

central limit theorem, they should be approximately Gaussian each. And actually, we're going

to think of them as being independent. There's no reason why the people in the control group

should have any effect on what's happening to the people in the test group. Those people

probably don't even know each other. And so, when I look at this, this should look like n 0 with

some mean and some variants, let's say I don't know what it is, OK?

The mean I actually know. It's mu drug minus mu control, OK? So if they were to plot the PDF

of this guy, it would look like this. I would have something which is centered at mu drug minus

mu control. And it would look like this, OK?

Now let's say that mu drug is actually equal to mu control. That this pharmaceutical company

is a huge scam. And they really are trying to sell bottled corn syrup for $200 a pop, OK? So

this is a huge scam. And the true things are actually equal to 0. So this thing is really centered

about 0, OK?

Now, if were not to do this, then basically, half of the time I would actually come up with a

distribution that's above this value. And half of the time I would have something that's below

this value, which would mean that half of the scams would actually go through FDA if I did not

do this. So what I'm trying to do is to say, well, OK. You have to be here, so that there is



actually a very low probability that just by chance you end up being here. And we'll make all

the statements extremely precise later on.

But I think the drug thing makes it interesting to see why you're making it hard, because You

don't want to allow people to sell a thing like that. Before we go more into the statistical

thinking associated to tests, let's just see how we would do this quantification, right? I mean

after all, this is what we probably are the most comfortable with at this point. So let's just try to

understand this.

And I'm going to make the statisticians favorite test, which is the thing that obviously you do at

home all the time every time you get a new quarter, is testing whether it's a fair coin or not. All

right? So this test, of course, exists only in textbooks. And I actually did not write this slide. I

was lazy to just replace all this stuff by the Cherry Blossom Run.

So you have a coin. Now you have 80 observations, x1 to x80. So n is equal to 80. I have x1,

xn, IID, Bernoulli p. And I want to know if I have a fair coin. So in mathematical language, I

want to know if p is equal to 1/2.

Let's say this is just the heads, OK? And a biased coin? Well, maybe you would potentially be

interested whether it's biased one direction or the other. But not being a fair coin is already

somewhat of a discovery, OK? And so, you just want to know whether p is equal to 1/2 or p is

not equal to 1/2, OK?

Now, if I were to apply the very naive first example to not reject this hypothesis. If I run this

thing 80 times, I need to see exactly 40 heads and 40 tales. Now this is very unlikely to

happen exactly. You're going to have close to 40 heads and close to 40 tails, but how close

should those things be? OK? And so, the little something is going to be quantified by exactly

this, OK?

So now here, let's say that my experiment gave me 54 heads. That's 54? Yeah. Which means

that my xn bar is 54 over 80, which is 0.68. All right? So I have this estimator. Looks pretty

large, right? It's much larger than 0.5, so it does look like, and my mom would certainly

conclude, that this is a biased coin for sure, because she thinks I'm tricky. All right.

So the question is, can this be due to chance? Can this be due to chance alone? Like what is

the likelihood that a fair coin would actually end up being 54 times on heads rather than 40?

OK? And so, what we do is we say, OK, I need to understand, what is the distribution of the



number of times it comes on heads? And this is going to be a binomial, but it's a little annoying

to play with. So we're going to use the central limit theorem that tells me that xn bar minus p

divided by square root of p1 minus p is approximately distributed as an n01. And here, since n

is equal to 80, I'm pretty safe that this is actually going to work.

And I can actually use [INAUDIBLE], and put xn bar here. [INAUDIBLE] tells me that this is OK

to do. All right.

So now I'm actually going to compute this. So here, I know this. This is square root of 80. This

is a 0.68. What is this value here? We'll talk about it. Well, we're trying to understand what

happens if it is a fair coin, right? So if fair, then p is equal to 0.5, right? So what I want to know

is, what is the likelihood that a fair coin would give me 0.68? Let me finish.

All right. What is the likelihood that a fair coin will allow me to do this, so I'm actually allowed to

plug-in p to be 0.5 here? Now, your question is, why do I not plug-in p to be 0.5? But you can.

All right. I just want to make you plug-in p at one specific point, but you're absolutely right.

OK. Let's forget about your question for one second. So now I'm going to have to look at xn

bar minus 0.5 divided by xn bar 1 minus xn bar. Then this thing is approximately Gaussian and

0,1 if the coin is fair. Otherwise, I'm going to have a mean which is not zero here. If the coin is

something else, whatever I get here, right? Let's just write it for one second.

Let's do it. So what is the distribution of this if p-- so that's p is equal to 0.5. OK? Now if p is

equal to 0.6, then this thing is just, well, I know that this is equal to square root of n xn bar

minus 0.6, divided by xn bar 1 minus xn in the bar squared root, plus-- well, now the

difference. Is So square root of n, 0.6 minus 0.5, divided by square root of xn bar 1 minus xn

bar, right? Now if p is equal to 0.6, then this guy is n 0,1, but this guy is something different.

This is just a number that depends on square root of n. It's actually pretty large.

So if I want to use the fact that this guy has a normal distribution, I need to plug-in the true

value here. Now, the implicit question that I got was the following. It says, well, if you know

what p is, then what's actually true is also this. If p is equal to 0.5, then since I know that root n

xn bar minus p divided by square root of p 1 minus p is some n 0, 1, it's also true that square

root of n xn bar minus 0.5 divided by square root of 0.5 1 minus 0.5 is n 0,1, right? I know

what p is. I'm just going to make it appear.

OK. And so, what's actually nice about this particular [INAUDIBLE] experiment is that I can



check if my assumption is valid by checking whether I'm actually-- so what I'm going to do right

now is check whether this is likely to be a Gaussian or not, right? And there's two ways I can

violate it. By violating mean, but also by violating the variance. And here, what I did in the first

case, I said, well I'm not allowing you to check whether you've violated the variance. I'm just

plugging whatever variance you're getting. Whereas here, I'm saying, well, there's two ways

you can violate it. And I'm just going to factor everything in.

So now I can plug-in this number. So this is 80. This is 0.68. So I can compute all this stuff. I

can compute all this stuff here as well. And what I get in this case, if I put the xn bar 1, I get

3.45, OK?

And now I claim that this makes it reasonable to reject the hypothesis that p is equal to 0.5.

Can somebody tell me why?

STUDENT: It's pretty big.

PROFESSOR: Yeah, 3 is pretty big. So it's very unlikely. So this number that I should see should look like the

number I would get if I asked a computer to draw one random Gaussian for me. This number,

when I draw one random Gaussian, is actually a number with 99.9% this number will be

between negative 3 and 3. With 78% it's going to be between negative 2 and 2. 68% is

between minus 1 and 1. And with like 90% it's between minus 2 and 2.

So getting a 3.45 when you do this is extremely unlikely to happen, which means that you

would have to be extremely unlucky for this to ever happen. Now, it can happen, right? It could

be the case that you flip 80 coins and 80 of them are heads. With what probability does this

happen? 1 over 2 to the 80, right? Which is probably better off playing the lottery with this kind

of odds, right? I mean, this is just not going to happen, but it might happen.

So we cannot remove completely the uncertainty, right? It's still possible that this is due to

noise. But we're just trying to make all the cases that are very unlikely go away, OK? And so,

now I claim that 3.45 is very unlikely for a Gaussian. So if I were to draw the PDF of a standard

Gaussian, right? So n 0, 1, right? So that's PDF of n 0, 1. 3.73 is basically here, OK? So it's

just too far in the tails. Understood?

Now I cannot say that the probability that the Gaussian is equal to 373 is small, right? I just

cannot say that, because it's 0. And it's also 0 for the probability that it's 0, even though the

most likely values are around 0. It's the continuous random variable. Any value you give me,



it's going to happen with probability zero.

So what we're going to say is, well, the fluctuations are larger than this number. The

probability that I get anything worse than this is actually extremely small, right? Anything worse

than this is just like farther than 3.73. And this is going to be what we control. All right? So in

this case, I claim that it's quite reasonable to reject the hypothesis.

Is everybody OK with this? Everybody find this shocking? Or everybody has no idea what's

going on? Do you have any questions? Yeah?

STUDENT: Regarding the case of p, where minus p isn't close to xn. If you use 1 minus p as 0.5, then

you're dividing by a larger number than you would if you used xn. So it feels like our true

number is not 3.45. It's something a little bit smaller than 3.45 for the distribution to actually be

like 1/2. Because it seems like we're adding an unnecessary extra error by using xn bar. And

we're adding an error that makes it seem that our result was less likely than it actually was.

PROFESSOR: That's correct. And you're right. I didn't want to plug-in the p everywhere, but you should plug

it in everywhere you can. That's for sure, OK? So let's agree on that. And that's true that it

makes the number a little bigger. You compute how much you would get, we would get if we

0.5 there. Well, I don't know what the square root of 80 is. Can somebody compute quickly?

I'm not asking you to do it. But what I want is two times square root of 80 times 0.18. 3.22

OK. I can make the same cartoon picture with 3.22. But you're right. This is definitely more

accurate. And I should have done this. I didn't want to get the confused message, OK?

All right. So now here's a second example that you can think of. So now I toss it 30 times. Still

in the realm of the central limit theorem. I get 13 heads rather than 15. So I'm actually much

closer to being exactly at half. So let's see if this is actually going to give me a plausible value.

So I get 0.33 in average. If the truth was 0.5, I would get something like 0.77. And now I claim

that 0.77 is a plausible realization for some standard Gaussian, OK? Now, 0.77 is going to look

like it's here. So that could very well be something that just comes because of randomness.

And again, if you think about it. If I told you, you were expecting 15, you saw 13, you're happy

to put that on the account of randomness. Now of course, the question is going to be, where

do I draw the line? Right? Is 12 the right number? Is 11? Is 10? What is it?

So basically, the answer is it's whatever you want to be. The problem it's hard to think on the



scale, right? What does it mean to think on the scale? If I can't think in this scale, I'm going to

have to think on the scale of 80 of them. I'm going to have to think on the scale of running 100

coin flips. And so, this scale is a moving target all the time. Every time you have a new

problem, you have to have a new skill in mind. And it's very difficult.

The purpose of statistical analysis, and in particular this process that content that takes your x

bar and turns it into something that should be standard Gaussian, allows you to map the value

of x bar into a scale that is the standard scale of the Gaussian. All right? Now, all you need to

have in mind is, what is a large number or an unusually large number for a Gaussian? That's

all you need to know.

So here, by the way, 0.77 is not this one, because it was actually negative 0.77. So this one.

OK. So I can be on the right or I can be on the left of zero. But they are still plausible. So

understand you could actually have in mind all the values that are plausible for a Gaussian

and those that are not plausible, and draw the line based on what you think is the right

number. So how large should a positive value of a Gaussian to become unreasonable for you?

Is it 1? Is it 1.5? Is it 2? Stop me when I get there. Is it 2.5? Is it 3?

STUDENT: I think 2.5 is definitely too big.

PROFESSOR: What?

STUDENT: Doesn't it depend on our prior? Let's say we already have really good evidence at this point

[INAUDIBLE]

PROFESSOR: Yeah, so this is not Bayesian statistics. So there's no such thing as a prior right now. We'll get

there. You'll have your moment during one short chapter. So there's no prior here, right? It's

really a matter of whether you think is a Gaussian large or not. It's not a matter of coins. It's

not a matter of anything.

Now I've just reduced it to just one question. So forget about everything we just said. And I'm

asking you, when do you decide that a number is too large to be reasonably drawn from a

Gaussian? And this number is 2 or 1.96. And that's basically the number that you get from this

quintel. We've seen the 1.96 before, right? It's actually q alpha over 2, where alpha is equal to

5%. That's a quintel of a Gaussian.

So actually, what we do is we map it again. So are now at the Gaussians. And then we map it

again into some probabilities, which is the probability of being farther than this thing. And now



probabilities, we can think. Probability is something that quantifies my error. And the question

is what percentage of error am I willing to tolerate.

And if I tell you 5%, that's something you can really envision. What it means is that if I were to

do this test a million times, 5% of the time I would expose myself to making a mistake. All right.

That's all it would say. If you said, well, I don't want to account for 5%, maybe I want 1%, then

you have to move from 1.94 to 2.5. And then if you say at I want 0.01%, then you have to

move to an even larger number. So it depends.

But stating this number 1%, 5%, 10% is much easier than seeing those numbers 1.96, 2.5, et

cetera. So we're just putting everything back on the scale. All right.

To conclude, this, again, as we said, does not suggest that the coin is unfair. Now, it might be

that the coin is unfair. We just don't have enough evidence to say that. And that goes back to

your question about, why are we siding with the fact that we're making it harder to conclude

that the runners were faster? And this is the same thing. We're making it harder to conclude

that the coin is biased. Because there is a status quo. And we're trying to see if we have

evidence against the status quo. The status quo for the runners is they ran the same speed.

The status quo for the coin, we can probably all agree is that the coin is fair.

The status quo for a drug? I mean, again, unless you prove me that you're actually not a

scammer is that the status quo is that this is maple syrup. There's nothing in there. Why would

you? I mean, if I let you get away with it, you would put corn syrup. It's cheaper. OK.

So now let's move on to math. All right. So when I started doing mathematics, I'm going to

have to talk about random variables and statistical models. And here, there is actually a very

simple thing, which actually goes back to this picture. A test is really asking me if my

parameter is in some region of the parameter set or another region of the parameter set,

right? Yes/no.

And so, what I'm going to be given is a sample, x1, xn. I have a model. And again, those can

be braces depending on the day. And so, now I'm going to give myself theta 0 and theta 1 to

this joint subset. OK. So capital theta here is the space in which my parameter can live.

To make two disjoint subsets, I could just split this guy in half, right? I'm going to say, well,

maybe it's this guy and this guy. OK. So this is theta 0. And this is theta 1.



What it means when I split those two guys, in test, I'm actually going to focus only on theta 0 or

theta 1. And so, it means that a priori I've already removed all the possibilities of theta being in

this region. What does it mean? Go back to the example of runners.

This region here for the Cherry Blossom Run is the set of parameters, where mu was larger

than 103.5, right? We removed that. We didn't even consider this possibility. We said either it's

less-- sorry. That's mu equal to 103.5. And this was mu less than 103.5, OK?

But these guys were like if it happens, it happens. I'm not making any statement about that

case. All right? So now I take those two subsets. And now I'm going to give them two different

names, because they're going to have an asymmetric role.

h0 is the null hypothesis. And h1 is the alternative hypothesis. h0 is the status quo. h1 is what

is considered typically as scientific discovery.

So if you're a regulator, you're going to push towards h0. If you're a scientist, you're going to

push towards h1. If you're a pharmaceutical company, you're going to push towards h1. OK?

And so, depending on whether you want to be conservative-- oh, I can find evidence in a lot of

data. As soon as you give me three data points, I'm going to be able to find evidence. That

means I'm going to tend to say, oh, it's h1. But if you say you need a lot of data before you can

actually move away from the status quo, that's age h0, OK? So think of h0 as being status

quo, h1 being some discovery that goes against the status quo. All right?

So if we believe that the truth theta is either in one of those, what we say is we want to test h0

against h1. OK. This is actually wording. So remember, because this is how your questions are

going to be formulated. And this is how you want to probably communicate as a statistician. So

you're going to say I have the null and I have an alternative. I want to test h0 against h1. I

want to test the null hypothesis against the alternative hypothesis, OK?

Now, the two hypotheses I forgot to say are actually this. h0 is that the theta belongs to theta

0. And h1 is that it theta belongs to theta 1. OK. So here, for example, theta was mu. And that

was mu equal to 103.5. And this was mu less than 103.5. OK? So typically, they're not going to

look like thetas and things like that. They're going to look like very simple things, where you

take your usual notation for your usual parameter and you just say in mathematical terms what

relationship this should be satisfying, right?

For example, in the drug example, that would be mu drug is equal to mu control. And here,



that would be mu drug less than mu control. The number of expectorations for people who

take the drug for the cough syrup is less than the number of expectoration of people who take

the corn syrup, OK?

So now what we want to do. We've set up our hypothesis testing problem. You're a scientist.

You've set up your problem. Now what you're going to do is collect data. And what you're

going to try to find on this data is evidence against h0. And the alternative is going to guide

you into which direction you should be looking for evidence against this guy. All right?

And so, of course, the narrower the alternative, the easier it is for you, because you just have

to look at the one possible candidate, right? But typically, h1 is a big group, like less than.

Nobody tells you it's either it's 103.5 and 103. People tell you it's either 103.5 or less than

103.5. OK. And so, what we want to do is to decide whether we reject h0. So we look for

evidence against h0 in the data, OK?

So as I said, h0 and h1 do not play a symmetric role. It's very important to know which one

you're going to place as h0 and which one you're going to place at h1. If it's a close call, you're

always going to side with h0, OK? So you have to be careful about those. You have to keep

that in mind that if it's a close call, if data does not carry a lot of evidence, you're going to side

with h0. And so, you're actually never saying that h0 is true. You're just saying I did not find

evidence against h0. You don't say I accept that h0. You say I failed to reject h0. OK.

And so one of the things that you want to keep in mind when you're doing this is this innocent

until proven guilty. So if you come from a country, like America, there's such a thing. And in

particular, lack of evidence does not mean that you are not guilty, all right? OJ Simpson was

found not guilty. It was not found innocent, OK?

And so, this is basically what happens is like the prosecutor brings their evidence. And then

the jury has to decide whether they were convinced that this person was guilty of anything.

And the question is, do you have enough evidence? But if you don't have evidence, it's not the

burden of the defender to prove that they're innocent. Nobody's proving their innocent. I

mean, sometimes it helps. But you just have to make sure that there's not enough evidence

against you, OK? And that's basically what it's doing. You're h0 until proven h1.

So how are we going to do this? Well, as I said, the role of estimators in hypothesis testing is

played by something called tests. And a test is a statistic. Can somebody remind me what a



statistic is? Yep?

STUDENT: The measure [INAUDIBLE]

PROFESSOR: Yeah, that's actually just one step more. So it's a function of the observations. And we require

it to be measurable. And as a rule of thumb, measurable means if I give you data, you can

actually compute it, OK? If you don't see a [INAUDIBLE] or an [INAUDIBLE], you don't have to

think about it. All right.

And so, what we do is we just have this test. But now I'm actually asking only from this test a

yes/no answer, which I can code as 0, 1, right? So as a rule of thumb, you say that, well, the

test is equal to 0 then h0. The test is equal to 1 at h1. And as we said, is that if the test is equal

to 0, it doesn't mean that a 0 is truth. It means that I feel to rejected h0. And if the test is equal

to 1, I reject h0.

So I have two possibilities. I look at my data. I turn it into a yes/no answer. And yes/no answer

is really h0 or h1, OK? Which one is the most likely basically. All right.

So in the coin flip example, our test statistic is actually something that takes value 0, 1. And

anything, any function that takes value at 0, 1 is an indicator function, OK? So an indicator

function is just a function. So there's many ways you can write it. So it's a 1 with a double bar.

If you aren't comfortable with this, it's totally OK to write i of something, like i of a. OK. And

that's what? So a, here, is a statement, like an inequality, an equality, some mathematical

statement, OK? Or not mathematical. I mean, "a" can be, you know, my grandma is 20 years

old, OK? And so, this is basically 1 if a is true, and 0 if a is false. That's the way you want to

think about it.

This function takes only two values, and that's it. So here's the example that we had. We

looked at whether the standardized xn bar, the one that actually is approximately n 0,1 was

larger than something in absolute value, either very large or very small, but negative. I'm going

back to this picture. We wanted to know if this guy was either to the left of something or to the

right of something, right? Was it in these regions?

Now this indicator, I can view this as a function of x bar. What it does, it really splits the

possible values of x bar, which is just a real number, right? In two groups. The groups on

which they lead to a value, which is 1. And the groups on which they lead to value, which is 0,

right?



So what it does is that I can actually think of it as the real line, x bar. And there's basically

some values here, where I'm going to get a 1. Maybe I'm going to get a 0 here. Maybe I'm

going to get a 0. Maybe I'm going to get a 1. I'm just splitting all possible values of x bar. And I

see whether to spit out the side which is 0 or which is 1.

In this case, it's not clear, right? I mean, the function is very nonlinear. It's x bar minus 0.5

divided by the square root of x bar 1 minus x bar. If we put the p in the denominator, that

would be clear. That would just be exactly something that looks like this. The function would be

like this. It would be 1 if it's smaller than some value. Less than 0 if it's in between two values.

And then 1 again. So that's psi, OK?

So this is 1, right? This is 1. And this is 0. So if x bar is too small or if x bar is too large, then

I'm getting a value 1. But if it's somewhere in between, I'm getting a value 0. Now, if I have this

weird function, it's not clear how this happened.

So the picture here that I get is that I have a weird non-linear function, right? So that's x bar.

That's square root of n x bar n 0.5 divided by the square root of x bar n 1 minus x bar n, right?

That's this function. A priori, I have no idea what this function looks like. We can probably

analyze this function, but let's pretend we don't know. So it's like some crazy stuff like this.

And all I'm asking is whether in absolute value it's larger than c, which means that is this

function larger than c or less than minus c? The intervals on which I'm going to say 1 are this

guy, this guy, this guy, and this guy. OK. And everywhere else, I'm seeing 0. Everybody agree

with this? This is what I'm doing.

Now of course, it's probably easier for you to just package it into this nice thing that's just

either larger than c, an absolute value, or less Than C. I want to have to plot this function. In

practice, you don't have to.

Now, this is where I am actually claiming. So here, I actually defined to you a test. And I

promised, starting this lecture, by saying, oh, now we're going to do something better than

computing the averages. Now I'm telling you it's just computing an average. And the thing is

the test is not just the specification of this x bar. It's also the specification of this constant c. All

right? And the constant c was exactly where our belief about what a large value for a Gaussian

is. That's exactly where it came in. So this choice of c is basically a threshold at which we

decide above this threshold this isn't likely to come from a Gaussian. Below this threshold we



decide that it's likely to come from a Gaussian. So we have to choose what this threshold is

based on what we think likely means.

Just a little bit more of those things. So now we're going to have to characterize what makes a

good test, right? Well, I'll come back to it in a second. But you could have a test that says

reject all the time. And that's going to be bad test, right? The FDA is not implementing a test

that says, yes all drugs work, now let's just go to Aruba, OK?

So people are trying to have something that tries to work all the time. Now FDA's not either

saying, let's just say that no drugs work, and let's go to Aruba, all right? They're just trying to

say the right thing as often as possible. And so, we're going to have to measure this.

So the things that are associated to a test are the rejection region. And if you look at this x in

en, such that psi of x is equal to 1, this is exactly this guy that I drew. So here, I summarized

the values of the sample into their average. But the values of the sample that I collect will lead

to a test that says 1. All right? So this is the rejection region.

If I collect a data point, technically I have-- so I have e to the n, which is a big space like this.

So that's e to the n. Think of it as being the space of xn bars. And I have a function that takes

only value 0, 1. So I can decompose it into this part where it takes value 0 and the part where

it takes value 1. And those can be super complicated, right?

Can have a thing like this. Can have some weird little islands where it takes value 1. I can have

some islands where it's takes value 0. I can have some weird stuff going on. But I can always

partition it into the value where it takes value 0 and the value where it takes value 1. And the

value where it takes 1, if psi is equal to 1, this is called the rejection region of the plot, OK? So

just the samples that would lead me to rejecting.

And notice that this is the indicator of the rejection region. The test is the indicator of the

rejection region.

So there's two ways you can make an error when there's a test. Either the truth is in h1, and

you're saying actually it's h1. Or the truth is in h1, and you say it's h0. And that's how we build-

in the asymmetry between h0 and h1. We control only one of the two errors. And we hope for

the best for the second one.

So the type 1 error is the one that says, well, if it is actually the status quo, but a claim that

there is a discovery-- if it's actually h0, but I claim that I'm in h1, then I admit I commit a type I



error. And so the probability of type I error is this function alpha of psi, which is the probability

of saying that psi is equal to 1 when theta is in h0.

Now, the problem is that this is not just number, because theta is just like moving all over h0,

right? There's many values that theta can be, right? So theta is somewhere here. I erased it,

OK.

All right. For simplicity, we're going to think of theta as being mu and 103.5, OK? And so, I

know that this is theta 1. And just this point here was theta 0, OK? Agreed? This is with the

Cherry Blossom Run.

Now, here in this case, it's actually easy. I need to compute this function alpha of psi, which

maps theta in theta 0 to p theta of psi equals 1. So that's the probability that I reject when

theta is in h0. Then there's only one of them to compute, because theta can only take this one

value. So this is really 103.5. OK. So that's the probability that I reject when the true mean was

103.5.

Now, if I was testing whether-- if h0 was this entire guy here, all the values larger than 103.5,

then I would have to compute this function for all possible values of the theta in there. And

guess what? The worst case is when it's going to be here. Because it's so close to the

alternative that that's where I'm making the most error possible.

And then there's the type 2 error, which is defined basically in the symmetric ways. The

function that maps theta to the probability. So that's the probability of type 2 errors. The

probability that I fail to reject h0, right? If psi is equal to 0, I fail to reject h0. But that actually

came from h1, OK?

So in this example, let's clear. If I'm here, like if the true mean was 100, I'm looking at the

probability that the true mean is actually 100, and I'm actually saying it was 103.5. Or it's not

less than 103.5. Yeah?

STUDENT: I'm just still confused by the notation. When you say that [INAUDIBLE] theta sub 1 arrow r, I'm

not sure what that notation means.

PROFESSOR: Well, this just means it's a function that maps theta 0 to r. You've seen functions, right? OK. So

that's just the way you write. So that means that's a function f that goes from, say, r r, and that

maps x to x squared. OK. So here, I'm just saying I don't have to consider all possible values.



I'm only considering the values on theta 0. I put r actually. I could restrict myself to the interval

0, 1, because those are probabilities.

So it's just telling me where my function comes from and where my function goes to. And beta

is a function, right? So beta psi of theta is just the probability that theta is equal to 1. And I

could define that for all thetas-- sorry. If psi is equal to 0 in this case. And that could define that

for all thetas. But the only ones that lead to an error are the thetas that are in h1. I mean, I can

define this function. It's just not going to correspond to an error, OK?

And the power of a test is the smallest-- so the power is basically 1 minus an error. 1 minus

the probability of an error. So it's the probability of making a correct decision, OK? So it's the

probability of making a correct decision under h1, that's what the power is. But again, this

could be a function. Because there's many ways that can be in h1 if h1 is an entire set of

numbers. For example, all the numbers there are less than 103.5.

And so, what I'm doing here when I define the power of a test, I'm looking at the smallest

possible of those values, OK? So I'm looking at this function. Maybe I should actually expand a

little more on this. OK.

So beta psi of theta is the probability under theta that psi is equal to 0, right? That's the

probability in theta 1, which means then the alternative, that they feel to reject. And I really

should, because theta was actually in theta 1, OK?

So this thing here is the probability of type 2 error. Now, this is 1 minus the probability that I did

reject and I should have rejected. That's just a little off the complement. Because if psi is not

equal to 0, then it's equal to 1. So now if I rearrange this, it tells me that the probability that psi

is equal to 1-- this is actually 1 minus beta psi of theta. So that's true for all thetas in theta 1.

And what I'm saying is, well, this is now a good thing, right? This number being large is a good

thing. It means I should have rejected, and I rejected. I want this to happen with large

probability. And so, what I'm going to look at is the most conservative choice of this number,

right? Rather than being super optimistic and say, oh, but indeed if theta was actually equal to

zero, then I'm always going to conclude that-- I mean, if mu is equal to 0, everybody runs in 0

seconds, then I with high probability I'm actually going to make no mistake. But really, I should

look at the worst possible case, OK? So what I'm looking at is basically the smallest value it

can take on theta one is called power of psi. Power of the test psi, OK? So that's the smallest

possible value it can take.



All right. So I'm sorry. This is a lot of definitions that you have to sink in. And it's not super

pleasant. But that's what testing is. There's a lot of jargon. Those are actually fairly simple

things. Just maybe you should get a sheet for yourself. And say, these are the new terms that

I learned. What is their test, rejection region? Probably of type I error, probably of type 2 error,

and power. Just make sure you know what those guys are. Oh. And null and alternative

hypothesis, OK?

And once you know all these things, you know what I'm talking about. You know what I'm

referring to. And this is just jargon. But in the end, those are just probabilities. I mean, these a

natural quantities. Just for some reason, people have been used to using different

terminology.

So just to illustrate. When do I make a typo 1 error? And when do I not make a type 1 error?

So I make a type 1 error if h0 is true and I reject h0, right? So the off diagonal blocks are when

I make an error. When I'm on the diagonal terms, h1 is true and I reject h0, that's a correct

decision. When h0 is true and I fail to reject h0, that's also the correct decision to make.

So I only make errors when I'm in one of the red blocks. And one block is the type 1 error and

the other block is the type 2 error. That's all it means, OK? So you just have to know which

one we called one. I mean, this was chosen in a pretty ad hoc way.

So to conclude this lecture, let me ask you a few questions. If in a US court, the defendant is

found either say, let's just say for the sake of discussion, innocent or guilty. All right? It's really

guilty for not guilty, but let's say innocent or guilty. When does the jury make a type 1 error?

Yep? And he's guilty? And he's innocent, right?

The status quo, everybody is innocent until proven guilty. So that's our h0 is that the person is

innocent. And so, that means that h0 is innocent. And so, we're looking at the probably of type

1 error, so that's when we reject the fact that it's innocent. So conclude that this person is

guilty, OK? So type 1 error is when this person is innocent and we conclude it's guilty.

What is the type 2 error? Letting a guilty person go free, which actually according to the

constitution, is the better of the two. All right? So what we're going to try to do is to control the

first one, and hope for the best for the second one.

How could the jury make sure that they make no type 1 error ever? Always let the guy go free,



right? What is the effect on the type 2 error? Yeah, it's the worst possible, right? I mean,

basically, for every guy that's guilty, you let them go. That's the worst you can do.

And same thing, right? How can the jury make sure that there's no type 2 error? Always

convict. What is the effect on the American budget? What is the effect on the type 1 error?

Right. So the effect is that basically the type 1 error is maximized. So there's this trade off

between type 1 and type 2 error that's inherent. And that's why we have this sort of multi

objective thing. We're trying to minimize two things at the same time.

And I can't find many ad hoc ways, right? So if you've taken any optimization, trying to

optimize two things when one is going up while the other one is going down, the only thing you

can do is make ad hoc heuristics. Maybe you try to minimize the sum of those two guys.

Maybe you try to minimize 1/3 of the first guy plus 2/3 of the second guy. Maybe you try to

minimize the first guy plus the square of the second guy. You can think of many ways, but

none of them is more justified than the other.

However, for statistical hypothesis testing, there's one that's very well justified, which is just

constrain your type 1 error to be the smallest, to be at a level that you deem acceptable. 5%. I

want to convict at most 5% of innocent people. That's what I deem reasonable. And based on

that, I'm going to try to convict as many people as they can, all right? So that's called the

Nieman Pearson paradigm, and we'll talk about it next time. All right. Thank you.


