18.445 Introduction to Stochastic Processes Lecture 20: Poisson process

Hao Wu

MIT

29 April 2015

Hao Wu (MIT)

▲ E ▶ E • つへの 29 April 2015 1 / 7

Random point process

A random point process is a countable random set of points of the real line which corresponds to the sequence of the times of occurrence of some event. For instance, the arrival times of customers.

Definition

A random point process on \mathbb{R}_+ is a sequence of random variables $(T_n)_{n\geq 0}$ such that

•
$$0 = T_0 < T_1 < T_2 < \cdots$$

•
$$\lim_n T_n = \infty$$

Definition

The interevent sequence : $S_n = T_n - T_{n-1}$ for $n \ge 1$. The counting process : For $(a, b] \subset \mathbb{R}_+$, define

$$N(a,b] = \sum_{n\geq 1} \mathbf{1}_{(a,b]}(T_n)$$

Definition

The counting process : For $(a, b] \subset \mathbb{R}_+$, define

$$N(a,b] = \sum_{n\geq 1} \mathbf{1}_{(a,b]}(T_n).$$

In particular, set $N_t = N(0, t]$. Then

•
$$N_0 = 0$$

•
$$N(a,b] = N_b - N_a$$

• $t \mapsto N_t$ is right-continuous

Poisson process

Definition

A point process *N* on \mathbb{R}_+ is called a Poisson process with intensity $\lambda > 0$ if

- For any $k \ge 1$, any $0 \le t_1 \le t_2 \le \cdots \le t_k$, the random variables $N(t_i, t_{i+1}], i = 1, \dots, k-1$ are independent.
- For any interval (a, b] ⊂ ℝ₊, the variable N(a, b] is a Poisson random variable with mean λ(b − a), i.e.

$$\mathbb{P}[N(a,b]=k]=e^{-\lambda(b-a)}\frac{(\lambda(b-a))^k}{k!}.$$

Theorem

The interevent sequence $(S_n)_{n\geq 1}$ of a Poisson process with intensity λ is i.i.d. with exponential distribution of parameter λ .

Poisson process — Markov property

Theorem (Markov property)

Let $(N_t)_{t\geq 0}$ be a Poisson process. Then, $\forall s \geq 0$,

• the process $(N_{t+s} - N_s)_{t \ge 0}$ is also a Poisson process

• and it is independent of $(N_u)_{u \le s}$

Theorem (Strong Markov property)

Let $(N_t)_{t\geq 0}$ be a Poisson process. Suppose that T is a stopping time, then conditional on $[T < \infty]$,

• the process $(N_{t+T} - N_T)_{t \ge 0}$ is also a Poisson process

• and it is independent of $(N_u)_{u \leq T}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Poisson process — Superposition

Theorem

Let $(N^i)_{i\geq 1}$ be a family of independent Poisson processes with respective positive intensities $(\lambda_i)_{i\geq 1}$. Then

- two distinct Poisson processes in this family have no points in common
- if ∑_{i≥1} λ_i = λ < ∞, then N_t = ∑_{i≥1} Nⁱ_t defines the counting process of a Poisson process with intensity λ.

Theorem

In this situation of the above theorem with $\sum \lambda_i = \lambda < \infty$. Denote by Z the first event time of $N = \sum N^i$ and by J the index of the Poisson process responsible for it. Then

$$\mathbb{P}[J=i, Z \ge a] = \mathbb{P}[J=i] \times \mathbb{P}[Z \ge a] = \frac{\lambda_i}{\lambda} e^{-\lambda a}.$$

Poisson process — Characterization

Theorem

Let $(X_t)_{t\geq 0}$ be an increasing right-continuous process taking values in $\{0, 1, 2, ...\}$ with $X_0 = 0$. Let $\lambda > 0$. Then the following statements are equivalent.

- $(X_t)_{t\geq 0}$ is a Poisson process with intensity λ .
- X has independent increments, and as ∈ ↓ 0, uniformly in t, we have

$$\mathbb{P}[X_{t+\epsilon} - X_t = 0] = 1 - \lambda \epsilon + o(\epsilon);$$

$$\mathbb{P}[X_{t+\epsilon} - X_t = 1] = \lambda \epsilon + o(\epsilon).$$

X has independent and stationary increments, and for all t ≥ 0 we have X_t ~ Poisson(λt).

18.445 Introduction to Stochastic Processes Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.