### MIT 18.443

Dr. Kempthorne

Spring 2015

æ

Definition Example Theorems

# Outline







æ

< ∃ >

< 1 →

Definition Example Theorems

### Sufficient Statistics

### Definition: Sufficiency

- $X_1, X_2, \ldots, X_n$  iid with distribution  $P_{\theta}$  with density/pmf  $f(x \mid \theta)$ .
- T(X<sub>1</sub>,..., X<sub>n</sub>) is a statistic (a well-defined function of the data computed wihout knowledge of θ).
- The statistic  $T(X_1, \ldots, X_n)$  is sufficient for  $\theta$  if the conditional distribution of  $X_1, \ldots, X_n$  given T = t does not depend on  $\theta$  for any value of t.

### **Power of Sufficient Statistics**

- If T(X<sub>1</sub>,...,X<sub>n</sub>) is sufficient for θ, then statistical inference about θ can focus exclusively on T and its conditional distribution given θ : T ~ f<sub>T</sub>(t | θ).
- Data reduction of the original sample  $(X_1, \ldots, X_n)$  to  $T(X_1, \ldots, X_n)$  maintains all the information in the sample about  $\theta$ .

Definition Example Theorems

# Outline





æ

< ∃ >

< 1 →

Definition Example Theorems

# Sufficiency: Example

**Example 8.8.1A Bernoulli Trials** Let  $\mathbf{X} = (X_1, \dots, X_n)$  be the outcome of *n* i.i.d *Bernoulli*( $\theta$ ) random variables

• The pmf function of X is:

$$p(\mathbf{X} \mid \theta) = P(X_1 = x_1 \mid \theta) \times \cdots \times P(X_n = x_n \mid \theta) = \theta^{x_1} (1-\theta)^{1-x_1} \times \theta^{x_2} (1-\theta)^{1-x_2} \times \cdots \theta^{x_n} (1-\theta)^{1-x_n} = \theta^{\sum x_i} (1-\theta)^{(n-\sum x_i)}$$

• Consider 
$$T(\mathbf{X}) = \sum_{i=1}^{n} X_i$$
 whose distribution has pmf:  
 $p(t \mid \theta) = {n \choose t} \theta^t (1-\theta)^{n-t}, 0 \le t \le n.$ 

n

• The distribution of **X** given  $T(\mathbf{X}) = t$  is uniform over the *n*-tuples X:  $T(\mathbf{X}) = t$ .

Thus,  $T(\mathbf{X})$  is sufficient for  $\theta$ .

# Sufficient Statistic for Bernoulli Trials

#### **Consequences of Sufficiency**

- The distribution of X given θ (not conditioned on T) can be simulated by generating T ~ Binomial(n, θ), and then choosing X randomly according to the uniform distribution over all tuples {x = (x<sub>1</sub>,...,x<sub>n</sub>) : T(x) = t} Given T(X) = t, the choice of tuple X does not require knowledge of θ.
- After knowing  $T(\mathbf{X}) = t$ , the additional information in  $\mathbf{X}$  is the sequence/order information which does not depend on  $\theta$ .
- To make statistical inferences concerning θ, we should only need the information of T(X) = t, since the value of X given t reflects only the order information in X which is independent of θ.

Definition Example **Theorems** 

# Outline



- Definition
- Example
- Theorems

æ

< ∃ >

< 1 →

### Sufficient Statistics

### Proposition

- Suppose θ̃ = q(X<sub>1</sub>,...,X<sub>n</sub>) is any estimate of θ specified by a function q(X<sub>1</sub>,...,X<sub>n</sub>) (which is well-specified without knowledge of θ).
- There always exists an estimate θ
  <sup>\*</sup> which depends only on the sufficient statistic T which is as good as θ
  <sup>˜</sup>.

 $\tilde{\theta}^*(X_1, \ldots, X_N) = q^*(t)$ , where  $t = T(X_1, \ldots, X_n)$  and  $q^*()$  is well-specified without knowledge of  $\theta$ .

Proof: Application of statistical decision theory covered in 18.466



### Sufficient Statistics: Theorems (Rice Section 8.8)

#### **Factorization Theorem**

A necessary and sufficient condition for  $T(X_1, \ldots, X_n)$  to be sufficient for a parameter  $\theta$  is that the joint probability density/pmf function factors in the form

$$f(x_1\ldots,x_n \mid \theta) = g[T(x_1,\ldots,x_n),\theta]h(x_1,\ldots,x_n).$$

### Corollary A

If T is sufficient for  $\theta$ , then the maximum likelihood estimate is a function of T.

### Rao-Blackwell Theorem

- Let  $\hat{\theta}$  be an estimator of  $\theta$  with  $E[\hat{\theta}^2] < \infty$  for all  $\theta$ .
- Suppose that T is sufficient for  $\theta$
- Define  $\tilde{\theta} = E[\hat{\theta} \mid T]$ .

Then for all  $\theta$ ,

$$E[(\hat{\theta} - \theta)^2] \le E[(\hat{\theta} - \theta)^2].$$

The inequality is strict unless  $\hat{\theta} \equiv \hat{\theta}$ .

#### 18.443 Statistics for Applications Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.