Summarizing Data

MIT 18.443
Dr. Kempthorne
Spring 2015

Outline

(1) Summarizing Data

- Overview
- Methods Based on CDFs
- Histograms, Density Curves, Stem-and-Leaf Plots
- Measures of Location and Dispersion

Summarizing Data

Overview

- Batches of data: single or multiple

$$
\begin{aligned}
& x_{1}, x_{2}, \ldots, x_{n} \\
& y_{1}, y_{2}, \ldots, y_{m} \\
& w_{1}, w_{2}, \ldots, w_{l}
\end{aligned}
$$

etc.

- Graphical displays
- Summary statistics:

$$
\begin{aligned}
& \bar{x}=\frac{1}{n} \sum_{1}^{n} x_{i}, \quad s_{x}=\sqrt{\frac{1}{n} \sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& \bar{y}, s_{y}, \bar{w}, s_{w}
\end{aligned}
$$

- Model: X_{1}, \ldots, X_{n} independent with $\mu=E\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left[X_{i}\right]$.
- Confidence intervals for μ (apply CLT)
- If identical, evaluate GOF of specific distribution family(s)

Summarizing Data

Overview (continued)

- Cumulative Distribution Functions (CDFs) Empirical analogs of Theoretical CDFs
- Histograms

Empirical analog of Theoretical PDFs/PMFs

- Summary Statistics
- Central Value (mean/average/median)
- Spread (standard deviation/range/inter-quartile range)
- Shape (symmetry/skewness/kurtosis)
- Boxplots: graphical display of distribution
- Scatterplots: relationships between variables

Outline

(1) Summarizing Data

- Overview
- Methods Based on CDFs
- Histograms, Density Curves, Stem-and-Leaf Plots
- Measures of Location and Dispersion

Methods Based on Cumlative Distribution Functions

Empirical CDF

- Batch of data: $x_{1}, x_{2}, \ldots, x_{n}$
(if data is a random sample, Batch \equiv i.i.d. sample)
- Def: Empirical CDF (ECDF)

$$
F_{n}(x)=\frac{\#\left(x_{i} \leq x\right)}{n}
$$

- Define ECDF Using Ordered batch:

$$
\begin{aligned}
x_{(1)} \leq x_{(2)} & \leq \cdots \leq x_{(n)} \\
F_{n}(x) & =0, \quad x<x_{(1)} \\
& =\frac{k}{n}, \quad x_{(k)} \leq x \leq x_{(k+1)}, \quad k=1, \ldots,(n-1) \\
& =1, \quad x>x_{(n)} .
\end{aligned}
$$

- The ECDF is the CDF of the discrete uniform distribution on the values $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. (Values weighted by multiplicity)

Methods Based on CDFs

Empirical CDF

- For each data value x_{i} define indicator

$$
I_{\left(-\infty, x_{i}\right]}(x)=\left\{\begin{array}{lll}
1, & \text { if } & x \leq x_{i} \\
0, & \text { if } & x>x_{i}
\end{array}\right.
$$

- $F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathrm{I}_{\left(-\infty, x_{i}\right]}(x)$
- If Batch \equiv sample from distribution with theoretical $\operatorname{cdf} F(\cdot)$,

$$
\begin{aligned}
& \mathrm{I}_{\left(-\infty, x_{i}\right.}(x) \text { are i.i.d. Bernoulli }(\text { prob }=F(x)), \\
& n F_{n}(x) \sim \operatorname{Binomial}(\text { size }=n, \operatorname{prob}=F(x)) .
\end{aligned}
$$

Thus:

$$
\begin{aligned}
E\left[F_{n}(x)\right] & =F(x) \\
\operatorname{Var}\left[F_{n}(x)\right] & =\frac{F(x)[1-F(x)]}{n}
\end{aligned}
$$

- For samples, $F_{n}(x)$ is unbiased for $\theta=F(x)$ and maximum variance is at the median:

Estimating $\theta=F(x)$ Using the Empirical CDF

- Confidence Interval Based on Binomial $\left[n F_{n}(x)\right.$]

$$
\hat{\theta}_{n}(x)-z(\alpha / 2) \hat{\sigma}_{\hat{\theta}}<\theta<\hat{\theta}_{n}(x)+z(\alpha / 2) \hat{\sigma}_{\hat{\theta}}
$$

where

$$
\begin{aligned}
\hat{\theta}_{n}(x) & =F_{n}(x) \\
\hat{\sigma}_{\hat{\theta}} & =\sqrt{\frac{F_{n}(x)\left[1-F_{n}(x)\right]}{n}} \\
z(\alpha / 2) & =\text { upper } \alpha / 2 \text { quantile of } N(0,1)
\end{aligned}
$$

Applied to single values of $(x, \theta=F(x))$

- Kolmogorov-Smirnov Test Statistic: If the x_{i} are a random sample from a continuous distribution with true CDF $F(x)$, then

$$
\text { KSstat }=\max _{-\infty<x<+\infty}\left|F_{n}(x)-F(x)\right| \sim T_{n}^{*}
$$

where the distribution of T_{n}^{*} has asymptotic distribution
$\sqrt{n} T_{n}^{*} \xrightarrow{\mathcal{D}} K^{*}$, the Kolmogorov distribution (which does not depend on $F!$)

Survival Functions

Definition: For a r.v. X with CDF $F(x)$, the Survival Function is

$$
S(x)=P(X>x)=1-F(x)
$$

- X : Time until death/failure/ "event"
- Empirical Survival Function

$$
S_{n}(x)=1-F_{n}(x)
$$

Example 10.2.2.A Survival Analysis of Test Treatements

- 5 Test Groups (I,II,III,IV,V) of 72 animals/group.
- 1 Control Group of 107 animals.
- Animals in each test group received same dosage of tubercle bacilli inoculation.
- Test groups varied from low dosage (I) to high dosage (V).
- Survival lifetimes measured over 2-year period.

Study Objectives/Questions:

- What is effect of increased exposure?

Hazard Function: Mortality Rate

Definition: For a lifetime distribution X with $\operatorname{cdf} F(x)$ and surivival function $S(x)=1-F(x)$, the hazard function $h(x)$ is the instantaneous mortality rate at age x :

$$
\begin{aligned}
h(x) \times \delta & =P(x<X<x+\delta \mid X>x) \\
& =\frac{f(x) \delta}{P(X>x)}=\frac{\delta f(x)}{1-F(x)} \\
& =\delta \frac{f(x)}{S(x)}
\end{aligned}
$$

$\Longrightarrow \quad h(x)=f(x) / S(x)$.
Alternate Representations of the Hazard Function

$$
\begin{aligned}
h(x) & =\frac{f(x)}{S(x)}=-\frac{\frac{d}{d x} S(x)}{S(x)} \\
& =-\frac{d}{d x}(\log [S(x)])=-\frac{d}{d x}(\log [1-F(x)])
\end{aligned}
$$

Hazard Function: Mortality Rate

Special Cases:

- $X \sim \operatorname{Exponential}(\lambda)$ with $\operatorname{cdf} F(x)=1-e^{-\lambda x}$

$$
h(x) \equiv \lambda(\text { constant mortality rate! })
$$

- $X \sim$ Rayleigh $\left(\sigma^{2}\right)$ with $\operatorname{cdf} F(x)=1-e^{-x^{2} / 2 \sigma^{2}}$

$$
\left.h(x)=x / \sigma^{2} \text { (mortality rate increases linearly }\right)
$$

- $X \sim \operatorname{Weibull}(\alpha, \beta)$ with $\operatorname{cdf} F(x)=1-e^{-(x / \alpha)^{\beta}}$

$$
h(x)=\beta x^{\beta-1} / \alpha^{\beta}
$$

Note: value of β determines whether $h(x)$ is increasing $(\beta>1)$, constant $(\beta=1)$, or or decreasing $(\beta<1)$.

Hazard Function

Log Survival Functions

- Ordered times: $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$
- For $x=X_{(j)}, F_{n}(x)=j / n$ and $S_{n}(x)=1-j / n$,
- Plot Log Survival Function versus age/lifetime $\log \left[S_{n}\left(x_{(j)}\right)\right]$ versus $x_{(j)}$
Note: to handle $j=n$ case apply modifed definition of $S_{n}()$:

$$
S_{n}\left(x_{(j)}\right)=1-j /(n+1)
$$

- In the plot of the log survival function, the hazard rate is the negative slope of the plotted function.
(straight line \equiv constant hazard/mortality rate)

Quantile-Quantile Plots

One-Sample Quantile-Quantile Plots

- X a continuous r.v. with CDF $F(x)$.
- p th quantile of the distribution: x_{p} :

$$
\begin{array}{clc}
F\left(x_{p}\right) & = & p \\
x_{p} & = & F^{-1}(p)
\end{array}
$$

- Empirical-Theoretical Quantile-Quantile Plot

$$
\text { Plot } x_{(j)} \text { versus } x_{p_{j}}=F^{-1}\left(p_{j}\right), \text { where } p_{j}=j /(n+1)
$$

Two-Sample Empirical-Empirical Quantile-Quantile Plot Context: two groups

- Control Group: x_{1}, \ldots, x_{n} i.i.d. cdf $F(x)$
- Test Treatment: y_{1}, \ldots, y_{n} i.i.d. cdf $G(y)$
- Plot order statistics of $\left\{y_{i}\right\}$ versus order statistics of $\left\{x_{i}\right\}$

Testing for No Treatment Effect

H_{0} : No treatment effect, $G() \equiv F()$

Two-Sample Empirical Quantile-Quantile Plots

Testing for Additive Treatment Effect

- Hypotheses:
H_{0} : No treatment effect, $G() \equiv F()$
H_{1} : Expected response increases by h units

$$
y_{p}=x_{p}+h
$$

- Relationship between $G()$ and $F()$

$$
\begin{aligned}
& G\left(y_{p}\right)=F\left(x_{p}\right)=p \\
& \Longrightarrow G\left(y_{p}\right)=F\left(y_{p}-h\right) .
\end{aligned}
$$

- CDF $G()$ is same as $F()$ but shifted h units to right
- Q-Q Plot is linear with slope $=1$ and intercept $=h$.

Two-Sample Empirical Quantile-Quantile Plots

Testing for Multiplicative Treatment Effect

- Hypotheses:
H_{0} : No treatment effect, $G() \equiv F()$
H_{1} : Expected response increases by factor of $c(>0)$

$$
y_{p}=c \times x_{p}
$$

- Relationship between $G()$ and $F()$

$$
\begin{aligned}
& G\left(y_{p}\right)=F\left(x_{p}\right)=p \\
& \Longrightarrow G\left(y_{p}\right)=F\left(y_{p} / c\right) .
\end{aligned}
$$

- CDF $G()$ is same as $F()$ when plotted on log horizontal scale (shifted $\log (c)$ units to right on log scale).
- Q-Q Plot is linear with slope $=c$ and intercept $=0$.

Outline

(1) Summarizing Data

- Overview
- Methods Based on CDFs
- Histograms, Density Curves, Stem-and-Leaf Plots
- Measures of Location and Dispersion

Histograms, Density Curves, Stem-and-Leaf Plots

Methods For Displaying Distributions (relevant R functions)

- Histogram: hist (x, nclass $=20$, probability $=T R U E)$
- Density Curve: $\operatorname{plot}(\operatorname{density}(x, b w=" s j "))$
- Kernel function: $w(x)$ with bandwidth h

$$
\begin{aligned}
w_{h}(x) & =\frac{1}{h} w\left(\frac{x}{h}\right) \\
f_{h}(x) & =\frac{1}{n} \sum_{i=1}^{n} w_{h}\left(x-X_{i}\right)
\end{aligned}
$$

- Options for Kernel function:

Gaussian: $w(x)=\operatorname{Normal}(0,1) \operatorname{pdf}$
$\Longrightarrow w_{h}\left(x-X_{i}\right)$ is $N\left(X_{i}, h\right)$ density
Rectangular, triangular, cosine, bi-weight, etc.

- See: Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization. New York: Wiley
- Stem-and-Leaf Plot: stem (x)
- Boxplots: boxplot(x)

Displaying Distributions

Boxplot Construction

- Vertical axis $=$ scale of sample X_{1}, \ldots, X_{n}
- Horizontal lines drawn at upper-quartile, lower - quartile and vertical lines join the box
- Horizontal line drawn at median inside the box
- Vertical line drawn up from upper-quartile to most extreme data point
within 1.5 (IQR) of the upper quartile.
(IQR=Inter-Quartile Range)
Also, vertical line drawn down from lower-quartile to most extreme data point
within 1.5 (IQR) of the lower-quartile
Short horizontal lines added to mark ends of vertical lines
- Each data point beyond the ends of vertical lines is marked with $*$ or .

Outline

(1) Summarizing Data

- Overview
- Methods Based on CDFs
- Histograms, Density Curves, Stem-and-Leaf Plots
- Measures of Location and Dispersion

Measures of Location and Dispersion

Location Measures

- Objective: measure center of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Arithmetic Mean

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} .
$$

Issues: not robust to outliers.

- Median

$$
\operatorname{median}\left(\left\{x_{i}\right\}\right)=\left\{\begin{array}{ll}
x_{\left[\left[^{*}\right]\right.}, & j^{*}=\frac{n+1}{2} \\
\frac{x_{[j]}^{*}+x_{\left[\left[^{*}+1\right]\right.}}{2}, & j^{*}=\frac{n}{2}
\end{array} \text { if } n\right. \text { is odd }
$$

Note: confidence intervals for $\eta=\operatorname{median}(X)$ of form

$$
\left[x_{[k]}, x_{[n+1-k]}\right]
$$

Rice Section 10.4.2 applies binomial distribution for

$$
\#\left(X_{i}>\eta\right)
$$

Measures of Location and Dispersion

Location Measures

- Trimmed Mean: x.trimmedmean $=$ mean $(x$, trim $=0.10)$
- 10% of of lowest values dropped
- 10% of highest values dropped
- mean of remaning values computed
(trim = parameter must be less than 0.5)
- M Estimates
- Least-squares estimate: Choose $\hat{\mu}$ to minimize

$$
\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}
$$

- MAD estimate: Choose $\hat{\mu}$ to minimize

$$
\sum_{i=1}^{n}\left|\frac{X_{i}-\mu}{\sigma}\right|
$$

(minimize mean absolute deviation)

Measures of Location and Dispersion

- M Estimates (continued)
- Huber Estimate: Choose $\hat{m} u$ to minimize

$$
\sum_{i=1}^{n} \Psi\left(\frac{X_{i}-\mu}{\sigma}\right)
$$

where $\Psi()$ is sum-of-squares near 0 (within $k \sigma$) and sum-of-absolutes far from 0 (more than $k \sigma$)
In R:

$$
\begin{aligned}
& \text { library(mass) } \\
& \text { x.mestimate }=\text { huber }(x, k=1.5)
\end{aligned}
$$

Comparing Location Estimates

- For symmetric distribution: same location parameter for all methods!

Apply Bootstrap to estimate variability

- For asymmetric distribution: location parameter varies

Measures of Dispersion

- Sample Standard Deviation: $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
- s^{2} unbiased for $\operatorname{Var}(X)$ if $\left\{X_{i}\right\}$ are i.i.d.
- s biased for $\sqrt{\operatorname{Var}(X)}$.
- For X_{i} i.i.d. $N\left(\mu, \sigma^{2}: \frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}\right.$.
- Interquartile Range: IQR $=q_{0.75}-q_{0.25}$
where q_{p} is the p-th quantile of F_{X}
- For X_{i} i.i.d. $N\left(\mu, \sigma^{2}\right), I Q R=1.35 \times \sigma$
- For Normal Sample: $\tilde{\sigma}=\frac{\text { sample IQR }}{1.35}$
- Mean Absolute Deviation: MAD $=\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$
- For X_{i} i.i.d. $N\left(\mu, \sigma^{2}\right), E[M A D]=0.675 \times \sigma$
- For Normal Sample: $\tilde{\sigma}=\frac{M A D}{0.675}$

MIT OpenCourseWare
http://ocw.mit.edu

18.443 Statistics for Applications

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

