NAME: $\qquad$

### 18.443 Exam 2 Spring 2015 <br> Statistics for Applications <br> 4/9/2015

## 1. True or False:

(a). The significance level of a statistical test is not equal to the probability that the null hypothesis is true.
(b). If a $99 \%$ confidence interval for a distribution parameter $\theta$ does not include $\theta_{0}$, the value under the null hypothesis, then the corresponding test with significance level $1 \%$ would reject the null hypothesis.
(c). Increasing the size of the rejection region will lower the power of a test.
(d). The likelihood ratio of a simple null hypothesis to a simple alternate hypothesis is a statistic which is higher the stronger the evidence of the data in favor of the null hypothesis.
(e). If the $p$-value is 0.02 , then the corresponding test will reject the null at the 0.05 level.

## 2. Testing Goodness of Fit.

Let $X$ be a binomial random variable with $n$ trials and probability $p$ of success.
(a). Suppose $n=100$ and $X=38$. Compute the Pearson chi-square statistic for testing the goodness of fit to the multinomial distribution with two cells with $H_{0}: p=0.5$.
(b). What is the approximate distribution of the test statistic in (a), under the null Hypothesis $H_{0}$.
(c). What can you say about the $P$-value of the Pearson chi-square statistic in (a) using the following table of percentiles for chi-square random variables? (i.e., $P\left(\chi_{3}^{2} \leq q .90=6.25\right)=.90$ )

| df | q .90 | q .95 | q .975 | q .99 | q .995 |
| ---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 2.71 | 3.84 | 5.02 | 6.63 | 9.14 |
| 2 | 4.61 | 5.99 | 7.38 | 9.21 | 11.98 |
| 3 | 6.25 | 7.81 | 9.35 | 11.34 | 14.32 |
| 4 | 7.78 | 9.49 | 11.14 | 13.28 | 16.42 |

(d). Consider the general case of the Pearson chi-square statistic in (a), where the outcome $X=x$ is kept as a variable (yet to be observed). Show that the Pearson chi-square statistic is an increasing function of $|x-n / 2|$.
(e). Suppose the rejection region of a test of $H_{0}$ is $\{X:|X-n / 2|>k\}$ for some fixed known number $k$. Using the central limit theorem (CLT) as an approximation to the distribution of $X$, write an expression that approximates the significance level of the test for given $k$. (Your answer can use the cdf of $Z \sim N(0,1): \Phi(z)=P(Z \leq z)$.)

## 3. Reliability Analysis

Suppose that $n=10$ items are sampled from a manufacturing process and $S$ items are found to be defective. A beta $(a, b)$ prior $\frac{1}{2}$ is used for the unknown proportion $\theta$ of defective items, where $a>0$, and $b>0$ are known.
(a). Consider the case of a beta prior with $a=1$ and $b=1$. Sketch a plot of the prior density of $\theta$ and of the posterior density of $\theta$ given $S=2$. For each density, what is the distribution's mean/expected value and identify it on your plot.
(b). Repeat (a) for the case of a $\operatorname{beta}(a=1, b=10)$ prior for $\theta$.
(c). What prior beliefs are implied by each prior in (a) and (b); explain how they differ?
(d). Suppose that $X=1$ or 0 according to whether an item is defective $(\mathrm{X}=1)$. For the general case of a prior $\operatorname{beta}(a, b)$ distribution with fixed $a$ and $b$, what is the marginal distribution of $X$ before the $n=10$ sample is taken and $S$ is observed? (Hint: specify the joint distribution of $X$ and $\theta$ first.)
(e). What is the marginal distribution of $X$ after the sample is taken? (Hint: specify the joint distribution of $X$ and $\theta$ using the posterior distribution of $\theta$.)

[^0]
## 4. Probability Plots

Random samples of size $n=100$ were simulated from four distributions:

- Uniform $(0,1)$
- Exponential(1)
- $\operatorname{Normal}(50,10)$
- Student's $t$ (4 degrees of freedom).

The quantile-quantile plots are plotted for each of these 4 samples:


For each sample, the values were re-scaled to have sample mean zero and sample standard deviation 1

$$
\left\{x_{i}, i=1, \ldots, 100\right\} \Longrightarrow\left\{Z_{i}=\frac{x_{i}-\bar{x}}{s_{x}}, i=1, \ldots, 100\right\}
$$

where $\bar{x}=\frac{1}{n} \sum_{1}^{n} x_{i}$ and $s_{x}^{2}=\frac{1}{n} \sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2}$

The Normal QQ plot for each set of standardized sample values is given in the next display but they are in a random order. For each distribution, identify the corresponding Normal QQ plot, and explain your reasoning.

- Uniform $(0,1)=$ Plot
- Exponential(1) $=$ Plot $\qquad$
- $\operatorname{Normal}(50,10)=$ Plot $\qquad$
- Student's $t$ (4 degrees of freedom $)=$ Plot $\qquad$


5. Betas for Stocks in S\&P 500 Index. In financial modeling of stock returns, the Capital Asset Pricing Model associates a "Beta" for any stock which measures how risky that stock is compared to the "market portfolio". (Note: this name has nothing to do with the beta(a,b) distribution!) Using monthly data, the Beta for each stock in the S\&P 500 Index was computed. The following display gives an index plot, histogram, Normal QQ plot for these Beta values.


For the sample of 500 Beta values, $\bar{x}=1.0902$ and $s_{x}=0.5053$.
(a). On the basis of the histogram and the Normal QQ plot, are the values consistent with being a random sample from a Normal distribution?
(b). Refine your answer to (a) focusing separately on the extreme low values (smallest quantiles) and on the extreme large values (highest quantiles).

Bayesian Analysis of a Normal Distribution. For a stock that is similar to those that are constituents of the S\&P 500 index above, let $X=1.6$ be an estimate of the Beta coefficient $\theta$.
Suppose that the following assumptions are reasonable:

- The conditional distribution $X$ given $\theta$ is Normal with known variance:

$$
X \mid \theta \sim \operatorname{Normal}\left(\theta, \sigma_{0}^{2}\right), \text { where } \sigma_{0}^{2}=(0.2)^{2} .
$$

- As a prior for $\theta$, assume that $\theta$ is Normal with mean and variance equal to those in the sample

$$
\theta \sim \operatorname{Normal}\left(\mu_{\text {prior }}, \sigma_{\text {prior }}^{2}\right)
$$

where $\mu_{\text {prior }}=1.0902$ anad $\sigma_{\text {prior }}=0.5053$
(c). Determine the posterior distribution of $\theta$ given $X=1.6$.
(d). Is the posterior mean between $X$ and $\mu_{\text {prior }}$ ? Would this always be the case if a different value of $X$ had been observed?
(e). Is the variance of the posterior distribution for $\theta$ given $X$ greater or less than the variance of the prior distribution for $\theta$ ? Does your answer depend on the value of $X$ ?

MIT OpenCourseWare
http://ocw.mit.edu

### 18.443 Statistics for Applications

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


[^0]:    ${ }^{1} \mathrm{~A}$ beta $(a, b)$ distribution has density $f_{\Theta}(\theta)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1}, 0<\theta<1$.
    Recall that for a beta $(a, b)$ distribution, the expected value is $a /(a+b)$, the variance is $\frac{a b}{(a+b)^{2}(a+b+1)}$. Also, when both $a>1$ and $b>1$, the mode of the probability density is at $(a-1) /(a+b-2)$,

