18.443 Exam 1 Spring 2015
 Statistics for Applications
 3/5/2015

1. Log Normal Distribution: A random variable X follows a Lognormal $\left(\theta, \sigma^{2}\right)$ distribution if $Y=\ln (X)$ follows a $\operatorname{Normal}\left(\theta, \sigma^{2}\right)$ distribution.
For the normal random variable $Y=\ln (X)$

- The probability density function of Y is

$$
f\left(y \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{(y-\theta)^{2}}{\sigma^{2}}}, \quad-\infty<y<\infty
$$

- The moment-generating function of Y is

$$
M_{Y}(t)=E\left[e^{t Y} \mid \theta, \sigma^{2}\right]=e^{t \theta+\frac{1}{2} \sigma^{2} t^{2}}
$$

(a). Compute the first two moments of a random variable $X \sim$ $\operatorname{Lognormal}\left(\theta, \sigma^{2}\right)$.

$$
\mu_{1}=E\left[X \mid \theta, \sigma^{2}\right] \text { and } \mu_{2}=E\left[X^{2} \mid \theta\right]
$$

Hint: Note that $X=e^{Y}$ and $X^{2}=e^{2 Y}$ where $Y \sim N\left(\theta, \sigma^{2}\right)$ and use the moment-generating function of Y.
(b). Suppose that X_{1}, \ldots, X_{n} is an i.i.d. sample from the $\operatorname{Lognormal}\left(\theta, \sigma^{2}\right)$ distribution of size n. Find the method of moments estimates of θ and σ^{2}.
Hint: evaluate μ_{2} / μ_{1}^{2} and find a method-of-moments estimate for σ^{2} first.
(c). For the log-normal random variable $X=e^{Y}$, where

$$
Y \sim \operatorname{Normal}\left(\theta, \sigma^{2}\right),
$$

prove that the probability density of X is

$$
f\left(x \mid \theta, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}}\left(\frac{1}{x}\right) e^{-\frac{1}{2} \frac{(\ln (x)-\theta)^{2}}{\sigma^{2}}}, \quad 0<x<\infty .
$$

(d). Suppose that X_{1}, \ldots, X_{n} is an i.i.d. sample from the $\operatorname{Lognormal}\left(\theta, \sigma^{2}\right)$ distribution of size n. Find the mle for θ assuming that σ^{2} is known to equal σ_{0}^{2}.
(e). Find the asymptotic variance of the mle for θ in (d).

Solution:

(a).

$$
\begin{aligned}
& \mu_{1}=E[X]=E\left[e^{Y}\right]=M_{Y}(1)=e^{\theta+\sigma^{2} / 2} \\
& \mu_{2}=E\left[X^{2}\right]=E\left[e^{2 Y}\right]=M_{Y}(2)=e^{2 \theta+2 \sigma^{2}}
\end{aligned}
$$

(b). First, note that:

$$
\mu_{2} /\left(\mu_{1}^{2}\right)=e^{\sigma^{2}}
$$

It follows that a method-of-moments estimate for σ^{2} is

$$
\hat{\sigma}^{2}=\ln \left(\hat{\mu}_{2} / \hat{\mu}_{1}^{2}\right)
$$

where

$$
\begin{aligned}
& \hat{\mu}_{1}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
& \hat{\mu}_{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}
\end{aligned}
$$

Substituting $\hat{\sigma}^{2}$ for σ^{2} in the formula for μ_{1} we get

$$
\begin{aligned}
\hat{\mu}_{1} & =e^{\theta+\hat{\sigma}^{2} / 2} \\
\Longrightarrow \hat{\theta} & =\ln \left(\hat{\mu}_{1}\right)-\hat{\sigma}^{2} / 2
\end{aligned}
$$

(c). Consider the transformation

$$
X=e^{Y} .
$$

which has the inverse: $y=\ln (x)$ and $d y / d x=1 / x$.
It follows that

$$
f_{X}(x)=f_{Y}(\ln (x))|d y / d x|=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \frac{1}{x} e^{-\frac{1}{2 \sigma^{2}}(\ln (x)-\theta)^{2}}
$$

(d). The \log of the density function for single realizations x is

$$
\ln \left[f\left(x \mid \theta, \sigma_{0}^{2}\right]=-\frac{1}{2} \ln \left(2 \pi \sigma_{0}^{2}\right)-\ln (x)-\frac{1}{2} \frac{(\ln (x)-\theta)^{2}}{\sigma_{0}^{2}}\right.
$$

For a sample x_{1}, \ldots, x_{n}, the likelihood function is

$$
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n} \ln \left[f\left(x_{i} \mid \theta, \sigma_{0}^{2}\right]\right. \\
& =-\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{n}\left(\ln \left(x_{i}\right)-\theta\right)^{2}+(\text { terms not depending on } \theta)
\end{aligned}
$$

$\ell(\theta)$ is minimized by $\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} \ln \left(x_{i}\right)$ - the mle from the sample of $Y_{i}=\ln \left(X_{i}\right)$ values.
(e). The asymptotic variance satisfies

$$
E\left[-\frac{d^{2} \ell(\theta)}{d \theta^{2}}\right] \approx 1 / \operatorname{Var}(\hat{\theta})
$$

Since $\frac{d^{2} \ell(\theta)}{d \theta^{2}}=\frac{n}{\sigma_{0}^{2}}$ is constant

$$
\operatorname{Var}(\hat{\theta}) \approx \sigma_{0}^{2} / n
$$

This asymptotic variance is in fact the actual variance of $\hat{\theta}$.
2. The Pareto distribution is used in economics to model values exceeding a threshhold (e.g., liability losses greater than $\$ 100$ million for a consumer products company). For a fixed, known threshhold value of $x_{0}>0$, the density function is

$$
f\left(x \mid x_{0}, \theta\right)=\theta x_{0}^{\theta} x^{-\theta-1}, \quad x \geq x_{0}, \text { and } \theta>1 .
$$

Note that the cumulative distribution function of X is

$$
P(X \leq x)=F_{X}(x)=1-\left(\frac{x}{x_{0}}\right)^{-\theta}
$$

(a). Find the method-of-moments estimate of θ.
(b). Find the mle of θ.
(c). Find the asymptotic variance of the mle.
(d). What is the large-sample asymptotic distribution of the mle?

Solution:

(a) Compute the first moment of a Pareto random variable X :

$$
\begin{aligned}
\mu_{1} & =\int_{x_{0}}^{\infty} x f\left(x \mid x_{0}, \theta\right) d x \\
& =\int_{x_{0}}^{\infty} x \times \theta x_{0}^{\theta} x^{-\theta-1} d x \\
& =\theta x_{0}^{\theta} \int_{x_{0}}^{\infty} x^{-\theta} d x \\
& =\theta x_{0}^{\theta}\left(\frac{1}{\theta-1}\right) x_{0}^{-(\theta-1)} \\
& =x_{0}\left(\frac{\theta}{\theta-1}\right)
\end{aligned}
$$

Solving $\mu_{1}=\hat{\mu}_{1}=\bar{x}$ for θ gives:

$$
\hat{\theta}=\left(\frac{\bar{x}}{\bar{x}-x_{0}}\right)
$$

(b). For a single observation $X=x$, we can write

$$
\begin{aligned}
\log [f(x \mid \theta)] & =\ln (\theta)+\theta \ln \left(x_{0}\right)-(\theta-1) \ln (x) \\
\left.\frac{\partial \log [f(x \mid \theta)}{\partial \theta}\right] & =\frac{1}{\theta}+\ln \left(x_{0}\right)-\ln (x) \\
\left.\frac{\partial^{2} \log [f(f \mid \theta)}{\partial \theta^{2}}\right] & =-\frac{1}{\theta^{2}}
\end{aligned}
$$

The mle for θ solves

$$
\begin{aligned}
0=\frac{\partial \ell(\theta)}{\partial \theta} & =\frac{\partial}{\partial \theta}\left(\sum_{i=1}^{n} \ln \left[f\left(x_{i} \mid \theta\right)\right]\right) \\
& =\sum_{1}^{n}\left[\frac{1}{\theta}+\ln \left(x_{0}\right)-\ln \left(x_{i}\right)\right] \\
& =\frac{n}{\theta}+n \ln \left(x_{0}\right)-\sum_{1}^{n} \ln \left(x_{i}\right) \\
\Longrightarrow \hat{\theta} & =\frac{n}{\sum_{1}^{n} \ln \left(x_{i}\right)-n \ln \left(x_{0}\right)}=\left[\frac{1}{n} \sum_{1}^{n} \ln \left(x_{i} / x_{0}\right)\right]^{-1}
\end{aligned}
$$

(c). The asymptotic variance of $\hat{\theta}$ is

$$
\operatorname{Var}(\hat{\theta}) \approx \frac{1}{n I(\theta)}=\frac{\theta^{2}}{n}
$$

Because $I(\theta)=E\left[-\frac{\partial^{2} \ln [f(x \mid \theta)]}{\partial \theta^{2}}\right]=\frac{1}{\theta^{2}}$
(d) The asymptotic distribution of $\hat{\theta}$ is

$$
\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{\mathcal{D}} N\left(0, \frac{1}{I(\theta)}\right)=N\left(0, \theta^{2}\right)
$$

or

$$
\hat{\theta} \xrightarrow{\mathcal{D}} N\left(\theta, \frac{\theta^{2}}{n}\right)
$$

3. Distributions derived from Normal random variables. Consider two independent random samples from two normal distributions:

- X_{1}, \ldots, X_{n} are n i.i.d. $\operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$ random variables.
- Y_{1}, \ldots, Y_{m} are m i.i.d. $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ random variables.
(a). If $\mu_{1}=\mu_{2}=0$, find two statistics

$$
\begin{aligned}
& T_{1}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right) \\
& T_{2}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)
\end{aligned}
$$

each of which is a t random variable and which are statistically independent. Explain in detail why your answers have a t distribution and why they are independent.
(b). If $\sigma_{1}^{2}=\sigma_{2}^{2}>0$, define a statistic

$$
T_{3}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)
$$

which has an F distribution.
An F distribution is determined by the numerator and denominator degrees of freedom. State the degrees of freedom for your statistic T_{3}.
(c). For your answer in (b), define the statistic

$$
T_{4}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)=\frac{1}{T_{3}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)}
$$

What is the distribution of T_{4} under the conditions of (b)?
(d). Suppose that $\sigma_{1}^{2}=\sigma_{2}^{2}$. If $S_{X}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$, and $S_{Y}^{2}=$ $\frac{1}{m-1} \sum_{i=1}^{m}\left(Y_{i}-\bar{Y}\right)^{2}$, are the sample variances of the two samples, show how to use the F distribution to find

$$
P\left(S_{X}^{2} / S_{Y}^{2}>c\right)
$$

(e). Repeat question (d) if it is known that $\sigma_{1}^{2}=2 \sigma_{2}^{2}$.

Solution:

(a). Consider

$$
\begin{aligned}
& T_{1}=\frac{\sqrt{n} \bar{X}}{\sqrt{S_{X}^{2}}} \\
& T_{2}=\frac{\sqrt{m \bar{Y}}}{\sqrt{S_{Y}^{2}}}
\end{aligned}
$$

where

$$
\begin{aligned}
\bar{X} & =\frac{1}{n} \sum_{1}^{n} X_{i} & \sim N\left(\mu_{1}, \sigma_{1}^{2} / n\right) \\
S_{X}^{2} & =\frac{1}{n-1} \sum_{1}^{n}\left(X_{i}-\bar{X}\right)^{2} & \sim\left(\frac{\sigma_{1}^{2}}{n-1}\right) \times \chi_{n-1}^{2} \\
\bar{Y} & =\frac{1}{m} \sum_{1}^{m} Y_{i} & \sim N\left(\mu_{2}, \sigma_{2}^{2} / n\right) \\
S_{X}^{2} & =\frac{1}{m-1} \sum_{1}^{m}\left(Y_{i}-\bar{Y}\right)^{2} & \sim\left(\frac{\sigma_{2}^{2}}{m-1}\right) \times \chi_{m-1}^{2}
\end{aligned}
$$

We know from theory that \bar{X} and S_{X}^{2} are independent, and \bar{Y} and S_{Y}^{2} are independent, and all 4 are mutually independent because they depend on independent samples.

For $\mu_{1}=0$, we can write

$$
T_{1}=\frac{\sqrt{n} \bar{X} / \sigma_{1}}{\sqrt{S_{X}^{2} / \sigma_{1}^{2}}} \sim t_{n-1}
$$

a t distribution with $(m-1)$ degrees of freedom, because the numerator is $N(0,1)$ random variable independent of the denominator which is $\sqrt{\chi_{m-1}^{2} /(m-1)}$.
And for $\mu_{2}=0$, we can write

$$
T_{2}=\frac{\sqrt{m} \bar{Y} / \sigma_{2}}{\sqrt{S_{Y}^{2} / \sigma_{2}^{2}}} \sim t_{m-1}
$$

a t distribution with $(n-1)$ degrees of freedom, because the numerator is $N(0,1)$ random variable independent of the denominator which is $\sqrt{\chi_{n-1}^{2} /(n-1)}$.
(b). For $\sigma_{1}^{2}=\sigma_{2}^{2}$ consider the statistic:

$$
\begin{aligned}
T_{3} & =\frac{S_{X}^{2}}{S^{2}} \\
& =\frac{S_{X}^{2} / \sigma_{1}^{2}}{S_{Y}^{2} / \sigma_{2}^{2}}
\end{aligned}
$$

The numerator is a χ_{n-1}^{2} random variable divided by its degrees of freedom $(n-1)$ and the denominator is an independent χ_{m-1}^{2} random variable divided by its degrees of freedom $(m-1)$. By definition the distribution of such a ratio is an F distribution with $(n-1)$ and $(m-1)$ degrees of freedom in the numerator/denominator.
(c). The inverse of an F random variable is also an F random variable - the degrees of freedom for numerator and denominator reverse.
(d). In general we know:

$$
\begin{aligned}
& \frac{(n-1) S_{X}^{2}}{\sigma_{1}^{2}} \sim \chi_{n-1}^{2} \\
& \frac{(m-1) S_{Y}^{2}}{\sigma_{2}^{2}} \sim \chi_{m-1}^{2}
\end{aligned}
$$

which are independent.

So, we can develop the expression:

$$
\begin{aligned}
P\left(\frac{S_{X}^{2}}{S_{Y}^{2}}>c\right) & =P\left(\frac{(n-1) S_{X}^{2} / \sigma_{1}^{2}}{(m-1) S_{Y}^{2} / \sigma_{2}^{2}}>\frac{(n-1) / \sigma_{1}^{2}}{(m-1) \sigma_{2}^{2}} \times c\right) \\
& =P\left(F_{(n-1),(m-1)}>\frac{(n-1)}{(m-1)} \times\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\right) \times c\right)
\end{aligned}
$$

The answer is the upper-tail probability of an F distribution with $(n-1),(m-1)$ degrees of freedom, equal to the probability of exceeding $\left(\frac{(n-1)}{(m-1)} \times\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\right) \times c\right)$
For (d), use $\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}=1$ and for (e) use $\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}=1 / 2$

4. Hardy-Weinberg (Multinomial) Model of Gene Frequencies

For a certain population, gene frequencies are in equilibrium: the genotypes $A A, A a$, and $a a$ occur with probabilities $(1-\theta)^{2}, 2 \theta(1-\theta)$, and θ^{2}. A random sample of 50 people from the population yielded the following data:

Genotype		
AA	Aa	aa
35	10	5

The table counts can be modeled as the multinomial distribution:

$$
\left(X_{1}, X_{2}, X_{3}\right) \sim M u l t i n o m i a l\left(n=50, p=\left((1-\theta)^{2}, 2 \theta(1-\theta), \theta^{2}\right)\right.
$$

(a). Find the mle of θ
(b). Find the asymptotic variance of the mle.
(c). What is the large sample asymptotic distribution of the mle?
(d). Find an approximate 90% confidence interval for θ. To construct the interval you may use the follow table of cumulative probabilities for a standard normal $N(0,1)$ random variable Z

$P(Z<z)$	z
0.99	2.326
0.975	1.960
0.950	1.645
0.90	1.182

(e). Using the mle $\hat{\theta}$ in (a), 1000 samples from the

$$
\operatorname{Multinomial}\left(n=50, p=\left((1-\hat{\theta})^{2}, 2 \hat{\theta}(1-\hat{\theta}), \hat{\theta}^{2}\right)\right)
$$

distribution were randomly generated, and mle estimates were computed for each sample: $\hat{\theta}_{j}^{*}, j=1, \ldots, 1000$.
For the true parameter θ_{0}, the sampling distribution of $\Delta=\hat{\theta}-\theta_{0}$ is approximated by that of $\tilde{\Delta}=\hat{\theta}^{*}-\hat{\theta}$. The 50 -th largest value of $\tilde{\Delta}$ was +0.065 and the 50 -th smallest value was -0.067 .
Use this information and the estimate in (a) to construct a (parametric) bootstrap confidence interval for the true θ_{0}. What is the confidence level of the interval? (If you do not have an answer to part (a), assume the mle $\hat{\theta}=0.25$).

Solution:

(a). Find the mle of θ

- $\left(X_{1}, X_{2}, X_{3}\right) \sim \operatorname{Multinomial}\left(n, p=\left((1-\theta)^{2}, 2 \theta(1-\theta), \theta^{2}\right)\right)$
- Log Likelihood for θ

$$
\begin{aligned}
\ell(\theta) & =\log \left(f\left(x_{1}, x_{2}, x_{3} \mid p_{1}(\theta), p_{2}(\theta), p_{3}(\theta)\right)\right) \\
& =\log \left(\frac{n!}{x_{1} \cdot \mid x x_{2}!x_{3}!} p_{1}(\theta)^{x_{1}} p_{2}(\theta)^{x_{2}} p_{3}(\theta)^{x_{3}}\right) \\
& =x_{1} \log \left((1-\theta)^{2}\right)+x_{2} \log (2 \theta(1-\theta)) \\
& \quad+x_{3} \log \left(\theta^{2}\right)+(\operatorname{non}-\theta \operatorname{terms}) \\
& =\left(2 x_{1}+x_{2}\right) \log (1-\theta)+\left(2 x_{3}+x_{2}\right) \log (\theta)+(\text { non }-\theta \text { terms })
\end{aligned}
$$

- First Differential of log likelihood:

$$
\begin{aligned}
\ell^{\prime}(\theta)= & -\frac{\left(2 x_{1}+x_{2}\right)}{1-\theta}+\frac{\left(2 x_{3}+x_{2}\right)}{\theta} \\
& \Longrightarrow \hat{\theta}=\frac{2 x_{3}+x_{2}}{2 x_{1}+2 x_{2}+2 x_{3}}=\frac{2 x_{3}+x_{2}}{2 n}=\frac{2(5)+10}{2(50)}=0.2
\end{aligned}
$$

(b). Find the asymptotic variance of the mle.

- $\operatorname{Var}(\hat{\theta}) \longrightarrow \frac{1}{E\left[-\ell^{\prime \prime}(\theta)\right]}$
- Second Differential of log likelihood:

$$
\begin{aligned}
\ell^{\prime \prime}(\theta) & =\frac{d}{d \theta}\left[-\frac{\left(2 x_{1}+x_{2}\right)}{1-\theta}+\frac{\left(2 x_{3}+x_{2}\right)}{\theta}\right] \\
& =-\frac{\left(2 x_{1}+x_{2}\right)}{(1-\theta)^{2}}-\frac{\left(2 x_{3}+x_{2}\right)}{\theta^{2}}
\end{aligned}
$$

- Each of the X_{i} are $\operatorname{Binomial}\left(n, p_{i}(\theta)\right)$ so

$$
\begin{aligned}
& E\left[X_{1}\right]=n p_{1}(\theta)=n(1-\theta)^{2} \\
& E\left[X_{2}\right]=n p_{2}(\theta)=n 2 \theta(1-\theta) \\
& E\left[X_{3}\right]=n p_{3}(\theta)=n \theta^{2}
\end{aligned}
$$

- $E\left[-\ell^{\prime \prime}(\theta)\right]=\frac{2 n}{\theta(1-\theta)}$
- $\hat{\sigma}_{\hat{\theta}}^{2}=\frac{\hat{\theta}(1-\hat{\theta})}{2 n}=\frac{0.8(1-0.8)}{2 \times 50}=0.16 / 100=(.4 / 10)^{2}=(.04)^{2}$
(c) The asymptotic distribution of $\hat{\theta}$ is $N\left(\theta, \frac{\theta(1-\theta)}{2 n}\right)$
(d) An approximate 90% confidence interval for θ is given by

$$
\{\theta: \hat{\theta}-z(\alpha / 2) \sqrt{\operatorname{Var}(\hat{\theta})}<\theta<\hat{\theta}+z(\alpha / 2) \sqrt{\operatorname{Var}(\hat{\theta})}\}
$$

where $\alpha=1-0.90$ and $z(.05)=1.645$, and $\sqrt{\operatorname{Var}(\hat{\theta})} \approx(.04)$.

So the approximate 90% confidence interval is:

$$
\{\theta: 0.20-.06580<\theta<0.20+.06580\}
$$

(e). For the bootstrap distribution of the errors $\Delta=\hat{\theta}-\theta_{0}$, (where θ_{0} is the true value), the approximate 5% and 95% quantiles are $\underline{\delta}=-0.067$ and $\bar{\delta}=0.065$.
The approximate 90% confidence interval is

$$
\begin{aligned}
& \{\theta: \hat{\theta}-\bar{\delta}<\theta<\hat{\theta}-\underline{\delta}\} \\
= & {[0.2-0.065,0.2+0.067] }
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.443 Statistics for Applications

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

