
Section 15 

Multiple linear regression. 

Let us consider a model 
Yi = �1Xi1 + . . . + �pXip + χi 

where random noise variables χ1, . . . , χn are i.i.d. N(0, π2). We can write this in a matrix 
form 

Y = X� + χ, 

where Y and χ are n × 1 vectors, � is p × 1 vector and X is n × p matrix. We will denote 
the columns of matrix X by X1, . . .Xp, i.e. 

X = (X1, . . . , Xp) 

and we will assume that these columns are linearly independent. If they are not linearly 
independent, we can not reconstruct parameters � from X and Y even if there is no noise 
χ. In simple linear regression this would correspond to all Xs being equal and we can not 
estimate a line from observations only at one point. So from now on we will assume that 
n > p and the rank of matrix X is equal to p. To estimate unknown parameters � and π we 
will use maximum likelihood estimators. 

Lemma 1. The MLE of � and π2 are given by: 

�̂ = (XT X)−1XT Y and π̂2 = 
n

1 |Y − X�̂|2 = 
n

1 |Y − X(XT X)−1XT Y |2 . 

Proof. The p.d.f. of Yi is


1 ⎟ 1 ⎠

fi(x) = ∼

2απ 
exp −

2π2 
(x − �1Xi1 − . . . − �pXip)

2

and, therefore, the likelihood function is


n n � ⎟ 1 ⎠n ⎟ 1 � ⎠ 
fi(Yi) = ∼

2απ 
exp −

2π2 
(Yi − �1Xi1 − . . . − �pXip)

2

i=1 i=1 
⎟ 1 ⎠n ⎟ 1 2

⎠ 
= ∼

2απ 
exp − |Y − X�| . 

2π2 
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To maximize the likelihood function, first, we need to minimize |Y − X�|2 . If we rewrite the 
norm squared using scalar product: 

p p

Y − X�|2 = (Y − �iXi, Y − �iXi)|

i=1 i=1 

p	 p

= (Y, Y ) − 2 �i(Y, Xi) + �i�j (Xi, Xj). 
� 

i=1 i,j=1 

Then setting the derivatives in each �i equal to zero 

p

−2(Y, Xi) + 2 �j(Xi, Xj) = 0 
� 

j=1 

we get 
p

(Y, Xi) = �j (Xi, Xj) for all i � p. 
� 

i=1 

In matrix notations this can be written as XT Y = XT X�. Matrix XT X is a p × p matrix. 
Is is invertible since by assumption X has rank p. So we can solve for � to get the MLE 

�̂ = (XT X)−1XT Y. 

It is now easy to minimize over π to get 

π̂2 = 
n

1 |Y − X�̂|2 = 
n

1 |Y − X(XT X)−1XT Y |2 . 

To do statistical inference we need to compute the joint distribution of these estimates. 
We will prove the following. 

Theorem. We have 

nπ̂2⎟
 ⎠

�̂ � N
 �, π2(XT X)−1 � �2 

n−p,

π2 

and estimates �̂ and π̂2 are independent. 
Proof. First of all, let us rewrite the estimates in terms of random noise χ using Y = 

X� + χ. We have 

�̂ = (XT X)−1XT Y = (XT X)−1XT (X� + χ) 

= (XT X)−1(XT X)� + (XT X)−1XT χ = � + (XT X)−1XT χ 

and since 

Y − X(XT X)−1XT Y	 = X� + χ − X(XT X)−1XT (X� + χ) 

= X� + χ − X� − X(XT X)−1XT χ = (I − X(XT X)−1XT )χ 

103




we have 

π̂2 = 
n

1 |(I − X(XT X)−1XT )χ|2 . 

Since �̂ is a linear transformation of a normal vector χ it will also be normal with mean 

E�̂ = E(� + (XT X)−1XT χ) = � 

and covariance matrix 

E(�̂ − �)(�̂ − �)T	 = E(XT X)−1XT χχT X(XT X)−1 

= (XT X)−1XT 
EχχT X(XT X)−1 

= (XT X)−1XT (π2I)X(XT X)−1 

= π2(XT X)−1(XT X)(XT X)−1 = π2(XT X)−1 . 

This proves that �̂ � N(�, π2(XT X)−1). To prove that �̂ and π̂2 are independent and to find 
the distribution of nπ̂2/π2 we will use the following trick. This trick can also be very useful 
computationally since it will relate all quantities of interest expressed in terms of n×p matrix 
X to quantities expressed in terms of a certain p × p matrix R which can be helpful when n 
is very large compared to p. We would like to manipulate the columns of matrix X to make 
them orthogonal to each other, which can be done by Gram-Schmidt orthogonalization. In 
other words, we want to represent matrix X as 

X = X0R 

where X0 is n × p matrix with columns X1, . . . , Xp that are orthogonal to each other and, 0 0 

moreover, form an orthonormal basis, and matrix R is p×p invertible (and upper triangular) 
matrix. In Matlab this can be done using economy size QR factorization 

[X0, R]=qr(X,0). 

The fact that columns of X0 are orthonormal implies that 

X0 
T X0 = I 

- a p × p identity matrix. Let us replace X by X0R everywhere in the estimates. We have 

(XT X)−1XT = (RT X0 
T X0R)−1RT X0 

T = (RT R)−1RT X0 
T = R−1(RT )−1RT = R−1X0 

T , 

X(XT X)−1XT = X0R(RT X0
2X0R)−1RT X0 

T = X0RR−1(RT )−1RT X0 
T = X0X0 

T . 

As a result 
�̂ − � = R−1X0 

T χ and nπ̂2 = |(I − X0X0 
T )χ|2 . (15.0.1) 

By construction p columns of X0, which are also the rows of X0 
T , are orthonormal. Therefore, 

we can choose the last n − p rows of a n × n matrix 
⎛ 

XT 
� 

A = 0 

· · · 
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�


to make A an orthogonal matrix, we just need to choose them to complete, together with 
rows of X0 

T , the orthonormal basis in Rn . Let us define a vector 
⎞⎞

χ1g1 
⎛


χ2 
.
.
.


XT 
0 

⎜
⎜
⎜
⎝


=

⎜
⎜
⎜
⎝


g2 
.
.
.


g = Aχ, i.e.
 .
· · ·

gn χn 

Since χ is a vector of i.i.d. standard normal, we proved before that its orthogonal transfor
mation g will also be a vector of independent N(0, π2) random variables g1, . . . , gn. First of 
all, since
 ⎞⎞

χ1g1 

= X0 
T⎜

⎝

⎜
⎝
.
.
.


.
.
. 
χn 

ĝ :=
 ,


gp 

we have ⎞

g1 

�̂ − � = R−1X0 
T χ = R−1 = R−1 ĝ. .
.
. 

gp 

⎜
⎝
 (15.0.2)


Next, we will prove that 
|(I − X0X

T )χ|2 = gp
2
+1 + . . . + g 2 . (15.0.3)0 n

First of all, orthogonal transformation preserves lengths, so g 2 = Aχ 2 = χ 2 . On the other 
2 

| | | | | |
hand, let us write χ = χT χ and break χ into a sum of two terms | |

χ = X0X
T χ + (I − X0X

T )χ.0 0 

Then we get 
⎟
 ⎠⎟
 ⎠


2 2 = χ = χT χ = χT X0X0 
T + χT (I − X0X0 

T ) X0X0 
T χ + (I − X0X0 

T )χ|g|
 |
 |
 .


When we multiply all the terms out we will use that X0 
T X0 = I since the matrix X0 

T X0 

consists of scalar products of columns of X0 which are orthonormal. This also implies that 

X0X0 
T (I − X0X0 

T ) = X0X0 
T − X0IX0 

T = 0. 

Using this we get 

g 2 = χ 2 = χT X0X
T χ + χT (I − X0X

T )(I − X0X
T )χ0 0 0| | | |

= |XT χ|2 + |(I − X0X
T )χ|2 = |ĝ|2 + |(I − X0X

T )χ|2 
0 0 0 

because ĝ = X0 
T χ so we finally proved that 

|(I − X0X0 
T )χ|2 = |g|2 − |ĝ|2 = g1

2 + . . . + gn 
2 − g1

2 − . . . − g 2 = gp
2
+1 + . . . + g 2 

p n 

which is (15.0.3). This proves that nπ̂2/π2 � �2 
n−p and it is also independent of �̂ which 

depends only on g1, . . . , gp by (15.0.2). 
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Let us for convenience write down equation (15.0.2) as a separate result. 

Lemma 2. Given a decomposition X = X0R with n × p matrix X0 with orthonormal 
columns and invertible (upper triangular) p × p matrix R we can represent 

⎞ � 
g1 
.�̂ − � = R−1 ĝ = R−1 � .. 

⎜ 
� ⎝ 

gp 

for independent N(0, π2) random variables g1, . . . , gp. 
Confidence intervals and t-tests for linear combination of parameters �. Let 

us consider a linear combination 

c1�1 + . . . + cp�p = c T � 

where c = (c1, . . . , cp)
T . To construct confidence intervals and t-tests for this linear combina-

T ˆtion we need to write down a distribution of c �. Clearly, it has a normal distribution with 
mean EcT �̂ = cT � and variance 

E(c T (�̂ − �))2 = Ec T (�̂ − �)(�̂ − �)T c = c T Cov( �̂)c = π2 c T (XT X)−1 c. 

Therefore, 

�
cT (�̂ − �) 

c 
� N(0, 1) 

π2cT (XT X)−1

and using that nπ̂2/π2 � �2 
n−p we get 

cT (�̂ − �) �
� 

1 nπ̂2 
� 

n − p

�

π2cT (XT X)−1c n − p π2 
= c T (�̂ − �) 

nπ̂2cT (XT X)−1c 
� tn−p.


To obtain the distribution of one parameter �̂i we need to choose a vector c that has all zeros 
and 1 in the ith coordinate. Then we get 

(�̂i − �i) 
n − p � tn−p. 

nπ̂2((XT X)−1)ii 

Here ((XT X)−1)ii is the ith diagonal element of the matrix (XT X)−1. This is a good time 
to mention how the quality of estimation of � depends on the choice of X. For example, we 
mentioned before that the columns of X should be linearly independent. What happens if 
some of them are nearly collinear? Then some eigenvalues of (XT X) will be ’small’ (in some 
sense) and some eigenvalues of (XT X)−1 will be ’large’. (Small and large here are relative 
terms because the size of the matrix also grows with n.) As a result, the confidence intervals 
for some parameters will get very large too which means that their estimates are not very 
accurate. To improve the quality of estimation we need to avoid using collinear predictors. 
We will see this in the example below. 
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Joint confidence set for � and F -test. By Lemma 2, R(�̂ − �) = ĝ and, therefore, 

g1
2 + . . . + gp 

2 = |ĝ|2 = ĝ T ĝ = ( �̂ − �)T RT R(�̂ − �) = ( �̂ − �)T XT X(�̂ − �). 

Since gi � N(0, π2) this proves that 

(�̂ − �)T XT X(�̂ − �) � �2 . 
π2 p

Using that nπ̂2/π2 � �2 
n−p gives 

(�̂ − �)T XT X(�̂ − �)� nπ̂2 (n − p) 
pπ2 (n − p)π2 

= 
npˆ

(�̂ − �)T XT X(�̂ − �) � Fp,n−p. 
π2 

If we take c such that Fp,n−p(0, c�) = � then 

(n − p)
(�̂ − �)T XT X(�̂ − �) � c� (15.0.4) 

npπ̂2 

defines a joint confidence set for all parameters � simultaneously with confidence level �. 
Suppose that we want to test a hypothesis about all parameters simultaneously, for 

example, 
H0 : � = �0. 

Then we consider a statistic 

F =
(n

np

− 
π̂2 

p)
(�̂ − �0)

T XT X(�̂ − �0), (15.0.5) 

which under null hypothesis has Fp,n−p distribution, and define a decision rule by 

β = 
H0 : F � c 
H1 : F > c, 

where a threshold c is determined by Fp,n−p(c, �) = � - a level of significance. Of course, 
this test is equivalent to checking if vector �0 belongs to a confidence set (15.0.4)! (We just 
need to remember that confidence level = 1 - level of significance.) 

Simultaneous confidence set and F -test for subsets of �. Let 

s = {i1, . . . , ik} ≤ {1, . . . , p} 

be s subset of size k � p of indices {1, . . . , p} and let �s = (�i1 , . . . , �ik )
T be a vector that 

consists of the corresponding subset of parameters �. Suppose that we would like to test the 
hypothesis 

H0 : �s = �s 
0 

for some given vector �s 
0 , for example, �s 

0 = 0. Let �̂s be a corresponding vector of estimates. 
Let ⎟ ⎠ 

= (XT X)−1�s i,j 
i,j�s 
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be a k × k submatrix of (XT X)−1 with row and column indices in the set s. By the above 
Theorem, the joint distribution of �̂s is 

�̂s � N(�s, π
2�s). 

Let A = �s 
1/2 

, i.e. A is a symmetric k ×k matrix such that �s = AAT . As a result, a centered 
vector of estimates can be represented as 

�̂s − �s = Ag, 

where g = (g1, . . . , gk)
T are independent N(0, π2). Therefore, g = A−1(�̂s − �s) and the rest 

is similar to the above argument. Namely, 

g1
2 + . . . + gk 

2	 = |g|2 = g T g = ( �̂s − �s)
T (A−1)T A−1(�̂s − �s) 

= (�̂s − �s)
T (AAT )−1(�̂s − �s) = ( �̂s − �s)

T �s
−1(�̂s − �s) � π2�2 

k. 

As before we get 
(n − p)

)T �−1F = 
π2 

(�̂s − �s s (�̂s − �s) � Fk,n−p
nkˆ

and we can now construct a simultaneous confidence set and F -tests. 

Remark. Matlab regression function ’regress’ assumes that a matrix X of explanatory 
variables will contain a first column of ones that corresponds to an ”intercept” parameter �1. 
The F -statistic output by ’regress’ corresponds to F -test about all other ”slope” parameters: 

H0 : �2 = . . . = �p = 0. 

In this case s = {2, 3, . . . , p}, k = p − 1 and 

F =
(n − p) 

�̂T �−1 ˆ
n(p − 1)π̂2 s s �s � Fp−1,n−p. 

Example. Let us take a look at the ’cigarette’ dataset from previous lecture. We saw 
that tar, nicotine and carbon monoxide content are positively correlated and any pair is 
well described by a simple linear regression. Suppose that we would like to predict carbon 
monoxide as a linear function of both tar and nicotine content. We create a 25 × 3 matrix 
X: 

X=[ones(25,1),tar,nic]; 

We introduce a first column of ones to allow an intercept parameter �1 in our multiple linear 
regression model: 

COi = �1 + �2Tari + �3Nicotini + χi. 

If we perform a multiple linear regression: 
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[b,bint,r,rint,stats] = regress(carb,X); 

We get the estimates of parameters and 95% confidence intervals for each parameter 

b = 3.0896 bint = 1.3397 4.8395 
0.9625 0.4717 1.4533 
-2.6463 -10.5004 5.2079 

and, in order, R2-statistic, F -statistic from (15.0.5), p-value for this statistic 

Fp,n−p(F, +�) = F3,25−3(F, +�) 

and the estimate of variance π̂2 : 

stats = 0.9186 124.1102 0.000 1.9952. 

First of all, we see that high R2 means that linear model explain most of the variability 
in the data and small p-value means that we reject the hypothesis that all parameters are 
equal to zero. On the other hand, simple linear regression showed that carbon monoxide had 
a positive correlation with nicotine and now we got �̂3 = −2.6463. Also, notice that the 
confidence interval for �3 is very poor. The reason for this is that tar and nicotine are nearly 
collinear. Because of this the matrix 

⎞ �
0.3568 0.0416 −0.9408 

(XT X)−1 = � 0.0416 0.0281 −0.4387 ⎝ 

−0.9408 −0.4387 7.1886 

has relatively large last diagonal diagonal value. We recall that Theorem gives that the 
variance of estimate �̂3 is 7.1886π2 and we also see that the estimate of π2 is π̂2 = 1.9952. 
As a result the confidence interval for �3 is rather poor. 

Of course, looking at linear combinations of tar and nicotine as new predictors does not 
make sense because they lose their meaning, but for the sake of illustrations let us see what 
would happen if our predictors were not nearly collinear but, in fact, orthonormal. Let us 
use economic QR decomposition 

[X0,R]=qr(X,0) 

a new matrix of predictor X0 with orthonormal columns that are some linear combinations 
of tar and nicotine. Then regressing carbon monoxide on these new predictors 

[b,bint,r,rint,stats] = regress(carb,X0); 

we would get 

b = -62.6400 bint = -65.5694 -59.7106 
-22.2324 -25.1618 -19.3030 
0.9870 -1.9424 3.9164 
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all confidence intervals of the same relatively better size.


Example. The following data presents per capita income of 20 countries for 1960s. Also 
presented are the percentages of labor force employed in agriculture, industry and service 
for each country. (Data source: lib.stat.cmu.edu/DASL/Datafiles/oecdat.html) 

COUNTRY PCINC AGR IND SER 

CANADA 1536 13 43 45 
SWEEDEN 1644 14 53 33 
SWITZERLAND 1361 11 56 33 
LUXEMBOURG 1242 15 51 34 
U. KINGDOM 1105 4 56 40 
DENMARK 1049 18 45 37 
W. GERMANY 1035 15 60 25 
FRANCE 1013 20 44 36 
BELGUIM 1005 6 52 42 
NORWAY 977 20 49 32 
ICELAND 839 25 47 29 
NETHERLANDS 810 11 49 40 
AUSTRIA 681 23 47 30 
IRELAND 529 36 30 34 
ITALY 504 27 46 28 
JAPAN 344 33 35 32 
GREECE 324 56 24 20 
SPAIN 290 42 37 21 
PORTUGAL 238 44 33 23 
TURKEY 177 79 12 9 

We can perform simple linear regression of income on each of the other explanatory variables 
or multiple linear regression on any pair of the explanatory variables. Fitting simple linear 
regression of income vs. percent of labor force in agriculture, industry and service: 

polytool(agr,income,1), 

etc., produces figure 15.1. Next, we perform statistical inference using ’regress’ function. 
Statistical analysis of linear regression fit of income vs. percent of labor force in agriculture: 

[b,bint,r,rint,stats]=regress(income,[ones(20,1),agr]) 

b = 1317.9 bint = 1094.7 1541.1 
-18.9 -26.0 -11.7 

stats = 0.6315 30.8472 2.8e-005 74596. 
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Figure 15.1: Linear regression of income on percent of labor force in agriculture, industry and 
service. 

For income vs. percent of labor force in industry 

[b,bint,r,rint,stats]=regress(income,[ones(20,1),ind]); 

b = -359.3115 bint = -907.1807 188.5577 
27.4905 15.3058 39.6751 

stats = 0.5552 22.4677 0.0002 90042 

and for income vs. labor force in service 

[b,bint,r,rint,stats]=regress(income,[ones(20,1),serv]); 

b = -264.5199 bint = -858.0257 328.9858 
35.3024 16.8955 53.7093 
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stats = 0.4742 16.2355 0.0008 106430. 

We see that in all three cases, the hypotheses that parameters of least-squares line are both 
zero can be rejected at conventional level of significance � = 0.05. Looking at the confidence 
intervals for the estimates of slopes we observe that the correlation of income with percent 
of labor force in agriculture is negative, and other two correlations are positive. 

We can also perform a multiple regression on any two explanatory variables. We can 
not perform multiple linear regression with all three explanatory variables because they add 
up to 100%, i.e. they are linearly dependent. If we create a predictor matrix 

X=[ones(20,1),agr,ind]; 

and perform multiple linear regression 

[b,bint,r,rint,stats]=regress(income,X); 

we get 

b = 1272.1 bint = -632.6 3176.9 
-18.4 -39.1 2.3 

0.8 -31.4 32.9 

stats = 0.6316 14.5703 0.0002 78972 

Of course, one can find many shortcomings of this model. For example, having the entire 
population in agriculture results in prediction of 1272.1 − 1840 < 0 negative income per 
capita. 
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