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Section 8 

Testing simple hypotheses. Bayes 
decision rules. 

Let us consider an i.i.d. sample X1, . . . , Xn ≤ X with unknown distribution P on X . Suppose 
that the distribution P belongs to a set of k specified distributions, P ≤ {P1, . . . , Pk}. Then, 
given a sample X, . . . , Xn we have to decide among k simple hypotheses: 

H1 : P = P1


H2 : P = P2

.
. . 

Hk : P = Pk. 

In other words, we need to construct a decision rule 

α : X n � {H1, . . . , Hk}. 

Let us note that sometimes this function α will be random because when several hypotheses 
are ’equally likely’ it will make sense to pick among them randomly. This idea of a randomized 
decision rule will be explained more precisely in the following lectures, but for now we will 
simply think of α as a function of the sample. 

Suppose that the ith hypothesis is true, i.e. P = Pi. Then the probability that a decision 
rule α will make an error is 

P(α = Hi Hi) = Pi(α = Hi),∞ | ∞
which is called the error of type i or type i error. When k = 2, i.e. we consider two hypotheses 
H1 and H2, the error of type 1 

�1 = P1(α = H1)∞
is also called the size or level of significance of the decision rule α and 

� = 1 − �2 = 1 − P2(α =∞ H2) = P2(α = H2) 

is called the power of α. 
In order to construct a good decision rule, we need to decide how to compare decision 

rules. Ideally, we would like to make the errors of all types as small as possible. However, 
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typically there is a trade-off among errors and it is impossible to minimize them simultane
ously. A decision rule α will create a partition of space X n into k disjoint subsets A1, . . . , Ak 

such that 
α(X1, . . . , Xn) = Hj if and only if (X1, . . . , Xn) ≤ Aj . 

Increasing a set Aj will decrease the error of type j since 

�j = P(Aj
c) = 1 − P(Aj) 

and, therefore, in this sense k simple hypotheses compete with each other. Of course, it is 
possible to give an example in which all errors are zero. For example, if all distributions 
P1, . . . , Pk concentrate on disjoint subsets of X then one observation is enough to predict the 
correct hypothesis with no error. 

One way to compare decision rules would be to assign weights �(1), . . . , �(k) to the 
hypotheses and consider a weighted error 

�(1)�1 + . . . �(k)�k = �(1)P(α = H1 H1) + . . . + �(k)P(α = Hk Hk).∞ | ∞ |

In the next section we will construct decision rules that minimize this weighted error. 
In the case of two simple hypotheses H1 and H2 it is more common to construct ’good’ 

decision rules based on a different criterion. Before we describe this criterion, let us first see 
that in many practical problems different types of errors have very different meanings. 

Example. Suppose that a medical test is done to determine if a patient is sick. Then 
based on the data from the test we have to decide between two hypotheses: 

H1 : positive; H2 : negative. 

Then the error of type one P(α = H2 H1) means that we determine that the patient is sick |
when he is not and the error of type two P(α = H1 H2) means that we determine that a |
patient is not sick when he is. Clearly, these errors are of a very different nature. In the first 
case a patient will not get a necessary treatment. In the second case a patient might get 
unnecessary and potentially harmful treatment. However, in the second case additional tests 
can be done whereas in the first case the sickness may be completely overlooked. This means 
that it may be more important to control the error of type 1 in this case. 

Example. Radar missile detection/recognition. Suppose that based on a radar image 
we decide between a missile and a passenger plane: 

H1 : missile, H2 : not missile. 

Then the error of type one P(α = H2 H1), means that we will ignore a missile and error of |
type two P(α = H2 H1), means that we will possibly shoot down a passenger plane (which |
happened before). It depends on the situation to decide which error is more important to 
control. 

Another example could be when ’guilty’ or ’not guilty’ verdict in court is decided based 
on some data. Presumption of innocence means that ’no guilty’ hypothesis is a more impor
tant null hypothesis and the error of type P(’guilty’ ’not guilty’) should be controlled. When |
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a drug company comes up with a new drug, it is their responsibility to prove that a drug 
works significantly better than a sugar pill, so a ’more important’ null hypothesis in this case 
is that a drug does not work better. 

These examples illustrate that in many situations a particular hypothesis is more im
portant in a sense that the error corresponding to this hypothesis should be controlled. We 
will assume that H1 is this hypothesis. Let � ≤ [0, 1] be the largest possible error of type 
one that we are willing to accept, which means that we will only consider decision rules in 
the class 

K� = {α : �1 = P1(α =∞ H1) � �}. 
It now makes sense that among all decision rules in this class we should try to find a decision 
rule that makes the error of type two, �2 = P2(α = H2), as small as possible. We will show ∞
how to construct such decision rules in the following lectures but, first, we will construct 
decision rules that minimize the weighted error. 

Bayes decision rules. 
Given hypotheses H1, . . . , Hk let us consider k nonnegative weights �(1), . . . , �(k) that 

add up to one 
�k

i=1 �(i) = 1. We can think of weights � as a priori probability on the set 
of k hypotheses that represent their relative importance. Then the Bayes error of a decision 
rule α is defined as 

k k 

�(�) = �(i)�i = �(i)Pi(α = Hi),∞
i=1 i=1 

which is simply a weighted error. We would like to make the Bayes error as small as possible. 

Definition: Decision rule α that minimizes �(�) is called a Bayes decision rule. 

Next theorem constructs Bayes decision rules in terms of p.d.f. or p.f. of Pi, 1 � i � k. 

Theorem. Assume that each distribution Pi has p.d.f or p.f. fi(x). A decision rule α 
that predicts Hj when 

�(j)fj(X1) . . . fj(Xn) = max �(i)fi(X1) . . . fi(Xn) 
1�i�k 

is a Bayes decision rule. 
In other words, we choose hypotheses Hj if it maximizes the weighted likelihood function 

�(i)fi(X1) . . . fi(Xn) 

among all hypotheses. If this maximum is achieved simultaneously on several hypotheses we 
can pick any one of them, or at random. 

Proof. Let us rewrite the Bayes error as follows: 

k 

�(�) = �(i)Pi(α = Hi)∞
i=1 

k ⎩

= �(i) I(α = Hi)fi(x1) . . . fi(xn)dx1 . . . dxn∞

i=1 
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⎩
 k ⎪ 
= �(i)fi(x1) . . . fi(xn) 1 − I(α = Hi) dx1 . . . dxn 

i=1 

k ⎩

= �(i) fi(x1) . . . fi(xn)dx1 . . . dxn 

i=1 ⎨

this joint density integrates to 1 and 

� 
�(i) = 1 

k⎩

− �(i)fi(x1) . . . fi(xn)I(α = Hi)dx1 . . . dxn 

i=1 
⎩
 k 

= 1 − �(i)fi(x1) . . . fi(xn)I(α = Hi)dx1 . . . dxn. 
i=1 

To minimize this Bayes error we need to maximize this last integral, but we can actually 
maximize the sum inside the integral 

�(1)f1(x1) . . . f1(xn)I(α = H1) + . . . + �(k)fk(x1) . . . fk(xn)I(α = Hk) 

by choosing α appropriately. For each (x1, . . . , xn) decision rule α picks only one hypothesis 
which means that only one term in this sum will be non zero, because if α picks Hj then 
only one indicator I(α = Hj) will be non zero and the sum will be equal to 

�(j)fj(x1) . . . fj (xn). 

Therefore, to maximize the integral α should simply pick the hypothesis that maximizes this 
expression, exactly as in the statement of the Theorem. This finishes the proof. 

Let us write down a Bayes decision rule in the case of two simple hypotheses H1, H2. 
For simplicity of notations, given a sample X = (X1, . . . , Xn) we will denote the joint p.d.f. 
or p.f. by 

fi(X) = fi(X1) . . . fi(Xn). 

Then the Bayes decision rule that minimizes the weighted error 

� = �(1)P1(α = H1) + �(2)P2(α = H2)∞ ∞

is given by

H1 : �(1)f1(X) > �(2)f2(X) 

α = H2 : �(2)f2(X) > �(1)f1(X) 
H1 or H2 : �(1)f1(X) = �(2)f2(X). 

Equivalently,


α =


� 
⎧⎧� 

⎧⎧�


f1(X) �(2)H1 : f2(X) > 
�(1) 

H2 : 
f1(X) < �(2) (8.0.1)
f2(X) �(1) 

H1 or H2 : 
f1(X) = �(2) .
f2(X) �(1) 
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PSfrag replacements

(Here 1
0 +�, 0

1 = 0.) This type of test is often called a likelihood ratio test because it is = 
expressed in terms of the ratio f1(X)/f2(X) of likelihood functions. 

Example. Suppose we have one observation X1 and two simple hypotheses 

H1 : P = N(0, 1) and H2 : P = N(1, 1). 

Take equal weights 
1 1 

�(1) = and �(2) = . 
2 2 

Then a Bayes decision rule α that minimizes 

1 1 
P1(α = H1) + P2(α = H2)

2 
∞

2 
∞

is given by


α(X1) = 

� 
⎧⎧� 

⎧⎧�


f1(X)H1 : f2(X) > 1 

H2 : 
f1(X) < 1
f2(X) 
f1(X)H1 or H2 : = 1.

f2(X) 

This decision rule has a very intuitive interpretation. If we look at the graphs of these p.d.f.s 
(figure 8.1) the decision rule picks the first hypothesis when the first p.d.f. is larger, x � 0.5, 
and otherwise picks the second hypothesis, x > 0.5 

0.6 
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f1(x) f2(x) 

H1H2 

Figure 8.1: Bayes decision rule. 
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Example. Let us a general example case of n observations X = (X1, . . . , Xn), two 
simple hypotheses H1 : P = N(0, 1) and H2 : P = N(1, 1), and arbitrary a priori weights 
�(1), �(2). Then Bayes decision rule is given by (8.0.1). The likelihood ratio can be simplified: 

f1(X)
= 

1 
e− 1

2 

Pn
i=1 Xi 

2 
� 1 

e− 1
2 

Pn
i=1(Xi−1)2 

f2(X) (
→

2ξ)n (
→

2ξ)n 

Xi2 i=1 i i=1= e 
1 Pn ((Xi −1)2−X2) = e 

n 
2 −

Pn 

. 

Therefore, the decision rule picks the first hypothesis H1 when 

e 
n 
2 −

P 
Xi >

�(2) 
or, equivalently, 

� 
Xi <

n 
2 
− log 

�(2) 
. 

�(1) �(1) 

Similarly, we pick the second hypothesis H2 when 

� n �(2)
Xi > 

2 
− log 

�(1) 
. 

In case of equality, we pick either H1 or H2. 
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