
Section 7


Testing hypotheses about parameters

of normal distribution.

T-tests and F-tests.


We will postpone a more systematic approach to hypotheses testing until the following 
lectures and in this lecture we will describe in an ad hoc way T-tests and F-tests about the 
parameters of normal distribution, since they are based on a very similar ideas to confidence 
intervals for parameters of normal distribution - the topic we have just covered. 

Suppose that we are given an i.i.d. sample from normal distribution N(µ, ν2) with some 
unknown parameters µ and ν2 . We will need to decide between two hypotheses about these 
unknown parameters - null hypothesis H0 and alternative hypothesis H1. Hypotheses H0 and 
H1 will be one of the following: 

H0 : µ = µ0, H1 : µ = µ0,∞
H0 : µ ∼ µ0, H1 : µ < µ0, 

H0 : µ ≈ µ0, H1 : µ > µ0, 

where µ0 is a given ’hypothesized’ parameter. We will also consider similar hypotheses about 
parameter ν2 . We want to construct a decision rule 

α : X n � {H0, H1} 

that given an i.i.d. sample (X1, . . . , Xn
n either accepts H0 or rejects H0 (accepts H1).) ≥ X 

Null hypothesis is usually a ’main’ hypothesis in a sense that it is expected or presumed to 
be true and we need a lot of evidence to the contrary to reject it. To quantify this, we pick a 
parameter � ≥ [0, 1], called level of significance, and make sure that a decision rule α rejects 
H0 when it is actually true with probability ≈ �, i.e. 

P(α = H1|H0) ≈ �. 

The probability on the left hand side is understood as a worse case scenario given that the 
null hypothesis is true, i.e. 

P (α = H1 H0) = sup|
(µ,�2 )�H0 

Pµ,�2 (α = H1). 

41 



Level of significance � is usually small, for example, � = 0.05. 

Example. Let us consider a Matlab example about normal body temperature from 
the lecture about confidence intervals. If a vector ’normtemp’ represents body temperature 
measurements of 130 people then typing the following command in Matlab 

[H,P,CI,STATS] = ttest(normtemp,98.6,0.05,’both’) 

produces the following output: 

H = 1, P = 2.4106e-007, CI = [98.1220, 98.3765] 
STATS = tstat: -5.4548, df: 129, sd: 0.7332. 

Here µ0 = 98.6, � = 0.05, ’both’ means that we consider a null hypothesis µ = µ0 in which 
case the alternative µ = µ0 is a two-sided hypothesis. The alternative µ > µ0 corresponds to ∞
parameter ’right’, and µ < µ0 corresponds to parameter ’left’. H = 1 means that we reject 
null hypothesis and accept H1, P=2.4106e-007 is a p-value that we will discuss below, CI is 
a 95% confidence interval for µ0 that we constructed in the previous lecture. If we want to 
test the hypothesis µ ∼ 98.6 then typing 

[H,P,CI,STATS] = ttest(normtemp(1:130,1),98.6,0.05,’left’) 

outputs 

H = 1, P = 1.2053e-007, CI = [-Inf, 98.3558], 
STATS = tstat: -5.4548, df: 129, sd: 0.7332. 

Notice that CI and P are different in this case. The fact that (in both cases) we rejected H0 

means that there is a significant evidence against it. In fact, we will see below that a p-value 
quantifies in some sense how unlikely it is to observe this dataset assuming that the null 
hypothesis is true. p-value of order 10−7 is a strong evidence against the hypothesis that a 
normal body temperature is µ0 = 98.6. 

Let us explain how these tests are constructed. They are based on the result that we

proved before that for MLE µ̂ = X̄ and ν̂2 = X̄2 X̄2 satisfy− 

A = 

≤
n(µ̂

ν 
− µ) � N(0, 1) and B = 

n

ν

ν̂
2

2 

� �2 
n−1 

and the random variables A and B are independent. 
Hypotheses about mean of one normal sample. We showed that a random variable 

≤
n − 1

µ̂ − µ � tn−1
ν̂

has tn−1-distribution with n − 1 degrees of freedom. Let us consider a t-statistic 

T = 
≤

n − 1
µ̂ − µ0 

. 
ν̂
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This statistic behaves differently depending on whether the ’true’ unknown mean µ = µ0, 
µ < µ0 or µ > µ0. First of all, if µ = µ0 then T � tn−1. If µ < µ0 then we can rewrite 

= 
≤

n − 1
µ̂ − 

ν̂

µ 
+ 
≤

n − 1
µ − 

ν̂

µ0 � −→ T 

since the first term has proper distribution tn−1 and the second term goes to infinity. Similarly, 
when µ > µ0 then T � + . Therefore, we can make a decision about our hypotheses based →
on this information about the behavior of T. 

I. (H0 : µ = µ0.) In this case, the indication that H0 is not true would be if T becomes | |
too large, i.e. T � ±→. Therefore, we consider a decision rule 

α =	
H0, if − c ≈ T ≈ c 
H1, if T > c. | | 

The choice of the threshold c depends on the level of significance �. We would like to have 

P(α = H1|H0) = P(|T | > c|H0) ≈ �. 

But given that µ = µ0, we know that T � tn−1 and, therefore, we can choose c from a 
condition 

P(|T | > c|H0) = tn−1(|T | > c) = 2tn−1((c, →)) = � 

using the table of tn−1-distribution. Notice that this decision rule is equivalent to finding 
the (1 − �)-confidence interval for unknown parameter µ and making a decision based on 
whether µ0 falls into this interval. 

II. (H0 : µ ∼ µ0.) In this case, the indication that H0 is not true, i.e. µ < µ0, would be 
if T � −→. Therefore, we consider a decision rule 

α =	
H0, if T ∼ c 
H1, if T < c. 

The choice of the threshold c depends on the condition 

P(α = H1|H0) = P(T < c|H0) ≈ �. 

Since we know that 
T ≤ = T −

≤
n − 1

µ − 
ν̂

µ0 � tn−1 

we can write 

P(T < c H0) = sup P 
� 
T	

µ − µ0 
� 

= P(T ≈ c) = tn−1((−→, c]) = �|	
µ�µ0 

≤ ≈ c −
≤

n − 1
ν̂

≤ 

and we can find c using the table of tn−1-distribution. 

43 



PSfrag replacements

� 
III. (H0 : µ ≈ µ0.) Similar to the previous case, the decision rule will be 

α =	
H0, if T ≈ c 
H1, if T > c. 

and we find c from the condition tn−1([c, + )) = �. →

p-value. Figure 7.1 illustrates the definition of p-value for all three cases above. p-value 
can be understood as a probability, given that the null hypothesis H0 is true, to observe a 
value of T -statistic equally or less likely than the one that was observed. Thus, the small 
p-value means that the observed T -statistic is very unlikely under the null hypothesis which 
provides a strong evidence against H0. The confidence level � defines what we consider as 
’unlikely enough’ to reject the null hypothesis. 
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Figure 7.1: p-values for different cases. 
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Hypotheses about variance of one normal sample. Next we will test similar two-
sided or one sided hypotheses about the variance, for example, H0 : ν = ν0 vs. H1 : ν = ν0,∞
etc. We will use the fact that nν̂2/ν2 � �n

2 
−1-distribution and as a result the test will be 
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� 

�	 � 

� 

� 

based of the following statistic: 
nν̂2 

Q = . 
ν2 

0 

Since we can write 
nν̂2 ν2 ν2 

Q = 
ν2 ν0

2 � 
ν0

2 �n
2 
−1, 

then, clearly, Q will behave differently depending on whether ν = ν0, ν > ν0 or ν < ν0. 
I. (H0 : ν = ν0.) In this case the decision rule will be 

α =	
H0, if c1 ≈ Q ≈ c2 

H1, if Q < c1, c2 < Q. 

Thresholds c1, c2 should satisfy the condition 

P(α = H1|H0) = P(Q < c1|ν = ν0) + P(Q > c2|ν = ν0) = �2 
n−1(0, c1) + �2 

n−1(c2, →) = �. 

For example, we can take 

�2 (0, c1) = and �2 (c2, ) = .n−1 2 n−1 →
2 

II. (H0 : ν ≈ ν0.) In this case the decision rule will be 

α =	
H0, if Q ≈ c 
H1, if Q > c. 

Threshold c should satisfy the condition 

P(α = H1 H0) = sup P(Q > c) = sup P 
�nν̂2 

>
ν0

2 

c 
� 

= P 
�nν̂2 

> c 
� 

= �2 
n−1(c, ) = �. 

ν2	 ν2
|

���0 ���0 ν2	
→

III. (H0 : ν ∼ ν0.) In this case the decision rule will be 

α =	
H0, if Q ∼ c 
H1, if Q < c. 

Threshold c is determined by 

�nν̂2 � 
P(α = H1 H0) = sup P(Q < c) = P < c = �n

2 
−1(0, c) = �. 

ν2
|	

���0 

Comparing means of two normal samples. In the normal body temperature dataset 
first 65 observations correspond to men and last 65 observations correspond to women. We 
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would like to test the hypothesis that normal body temperature of men and women is the 
same. There are several way to do this. 

Paired t-test. First, we can perform the so called paired t-test. Since the number of 
observations is the same in both groups, we can pair them together and assume that their 
differences Zi = Xi − Yi will also be normal. This sounds like a reasonable assumption 
since Xi and Yi should be independent if the measurements were taken independently. Since 
µz = µx − µy, hypothesis µx = µy is equivalent to µz = 0 which means that we can do the 
usual t-test for one sample Z1, . . . , Zn. Running 

[H,P,CI,STATS]=ttest(men,women,0.05,’both’) 

outputs 

H = 1, P = 3.9773e-019, CI = [-0.3348,-0.2437] 
STATS = tstat: -12.6858, df: 64, sd: 0.1838. 

We reject null hypothesis that the means are equal and, in fact, p-value of order 10−19 is a 
strong evidence against it. However, it seems rather suspicious that there is such a strong 
evidence against H0, especially after we perform a two sample t-test below which also rejects 
H0 but with a much higher p-value of 0.0239. When we examine the data file more closely 
we notice that the body temperatures were arranged in an increasing order both for men 
and women. This means that the assumption that our samples are i.i.d. is not longer true. 
To restore this, we randomly permute both vectors and denote their difference by ’z’. (To 
permute ’men’ type ’men(randperm(65))’, the same for women.) Then performing t-test for 
the difference ’z’ 

[H,P,CI,STATS]=ttest(z,0,0.05,’both’) 

we get 

H = 1, P =0.0442, CI = [0.0078, 0.5707] 
STATS = tstat: 2.0528, df: 64, sd: 1.1359 

which is a more reasonable (and correct) outcome. 

Two sample t-test assuming equal variances. If we run the following command in 
Matlab: 

[H,P,CI,STATS]=ttest2(men,women,0.05,’both’,’equal’) 

we get the following output: 

H = 1, P = 0.0239, CI = [-0.5396, -0.0388], 
STATS = tstat: -2.2854, df: 128, sd: 0.7215. 
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� 
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We again reject the hypothesis that µx = µy at the level of significance � = 0.05 but this 
time p-value is equal to 0.0239. Here ’both’ means that we test two-sided hypothesis µx = µy, 
and ’equal’ means that we assume that the ’true’ unknown variances of the distributions of 
two samples νx 

2 and νy 
2 are equal, i.e. 

ν2 = ν2 = ν2 
x y 

Let n and m be the number of observations in the first sample (Xs) and second sample (Y s) 
correspondingly. We proved that 

)	 xAx = 

≤
n(µ̂x − µx � N(0, 1) and Bx = 

nν̂2 

� �2 

νx νx 
2 n−1 

and 
ν2 

Ay = 

≤
m(µ̂y − µy) � N(0, 1) and By = 

mˆy � �2 

νy νy 
2 m−1 

and Ax, Bx, Ay, By are independent. Using the properties of normal distribution we get 

A = 
�(µ̂x − µx) (µ̂y − µy)

��� 1
+ 

1 � 
� N(0, 1)

νx 
− 

νy n m 

and by definition of �2-distributions, 

nν̂2	 mν̂2 

B = 
ν2 

x + 
ν2 

y � �2 
n+m−2. 

x y 

Therefore, 
� 1 

A
n + m − 2 

B � tn+m−2. 

Notice that because νx 
2 and νy 

2 are unknown, in general, we can not compute this expression. 
However, if we assume that variances are equal then all νx and νy will cancel out and we 
will get 

�nm(n + m − 2)�1/2 (µ̂x − µ̂y) − (µx − µy) � tn+m−2. 
n + m (nν̂x 

2 + mν̂y 
2)1/2 

Since this expression depends only on the difference of means µx −µy, we can test hypotheses 
about this difference based on the statistic 

�nm(n + m − 2)�1/2 µ̂x − µ̂y
T = 

n + m (nν̂x 
2 + mν̂y 

2)1/2 

For example, if we want to test H0 : µx = µy or, equivalently, µx − µy = 0 we can consider a 
decision rule 

α =	
H0, if − c ≈ T ≈ c 
H1, if T > c | | 

and find c from the condition 2tn+m−2(c, ) = �. Notice that in the Matlab output above →
we have df = 128, i.e. n + m − 2 = 65 + 65 − 2 = 128 degrees of freedom. One-sided tests 
are also similar to the case of one sample test. 
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t-test with unequal variances. Assuming that variances are equal could be unjusti
fied. There is a version of t-test which does not make this assumption. However, we can no 
compute exactly the distribution of t-statistic above (since variances do not cancel out), and 
we can only construct ’approximate’ tests. For example, running in Matlab: 

[H,P,CI,STATS]=ttest2(men,women,0.05,’both’,’unequal’) 

gives 

H = 1, P = 0.0239, CI =[-0.5396,-0.0388],

STATS = tstat: -2.2854, df: 127.5103, sd: [2x1 double].


Notice non integer value for degrees of freedom 127.5103. To construct the test for this 
general case we can start with (using properties of normal distribution) 

� νx 
2 νy 

2 � 
(µ̂x − µx) − (µ̂y − µy) � N 0, + 

n m 

or 
�ν2 ν2 �1/2 

((µ̂x − µ̂y) − (µx − µy))/ x + y � N(0, 1) 
n m 

We do not know the variances νx 
2 and νy 

2 but we know by law of large numbers that their 
estimates ν̂x 

2 and ν̂y 
2 converge and, therefore, 

�� ν̂2 ν̂2 �1/2 
(µ̂x − µ̂y) − (µx − µy)) 

n 
x + 

m 
y � N(0, 1) 

will have approximately normal distribution when n and m are large. We can now construct 
all the tests as above, only now they will be approximate. However, usually a different 
(supposedly better) approximation is used, called Satterthwaite approximation, also used by 
Matlab. First of all, instead of ν̂x 

2 we will use unbiased estimated of variance: 

nν̂2 

ν≤ 2 
= x 

x n − 1 

which will give us a slightly different expression 

�� ν̂2 ν̂2 �1/2 
((µ̂x − µ̂y) − (µx − µy)) 

n − 
x 

1
+ 

m − 
y 

1 
� N(0, 1). 

Unbiased estimate νx
≤ 2 is different from MLE ν̂x 

2 only by a fraction n/(n − 1) and we can see 
that this makes very small difference between two expressions above. More important differ
ence is that instead of using normal approximation � N(0, 1) we will use a t� -distribution 
approximation 

�� ν̂2 ν̂2 �1/2 
((µ̂x − µ̂y) − (µx − µy)) 

n − 
x 

1
+ 

m − 
y 

1 
� t� (7.0.1) 
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�

� =


�


�


where the number of degrees of freedom � is determined from the following consideration. 
We know from the definition of tn-distribution and properties of �2 

n-distribution that (using 
informal notations) 

N(0, 1) N(0, 1)
tn = � = � . 

n 
1 �2 

n 
1 � 

� 
n 
2 , 

1
2 

� 
n 

This could be used as a definition of tn-distribution even when degrees of freedom parameter n 
is not integer. To find a good approximation in (7.0.1), we need to find a good approximation 

� ν̂2 ν̂2 � �ν2 ν2 � 1 �� 1� 

n − 
x 

1
+ 

m − 
y 

1 
/ x + y � � , . 

n n � 2 2 

It is easy to check that the expectations of both sides are equal, so we will choose � from 
the condition that the variances of both sides are also equal, which will give 

�2 

� = 

�2 
x 
n + 

2 
y 

m 

1 
n−1 

�
�2 

x 

�2 
+ 1 

y−1 

�
�2 

y 

�2 . 

n m 

Finally, since the variances are unknown we will replace them by their unbiased estimates 
and take �22 

y 
2 
x �̂�̂ +


n−1 m−1 
�2 .�2 � ̂

1 �2 
y 2 

x�̂1 +

n−1 n−1 my−1 

Therefore, we obtain approximation (7.0.1) which is supposedly better than a simple normal 
approximation. The degrees of freedom df : 127.5103 in the Matlab output is precisely given 
by this formula. 

Comparing the variances of two normal distributions: F -test. Suppose that we 
want to test whether the variances of two normal distributions are equal. For example, in 
the first two sample t-test we assumed that νx 

2 = νy 
2 . We can test this in Matlab: 

[H,P,CI,STATS]=vartest2(men,women,0.05,’both’) 

and we get the following output: 

H = 0, P = 0.6211, CI = [0.5388, 1.4481] 
STATS = fstat: 0.8833, df1: 64, df2: 64. 

We accept the two-sided null hypothesis H0 : νx = νy. The high p-value 0.6211 means that 
there is no evidence against null hypothesis. This test is constructed as follows. Since we 
know that 

nν̂2 mν̂2 

Bx = x � �2 and By = y � �2 

ν2 n−1 ν2 m−1 
x y 
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� � 

� 

the ratio

Bx/(n − 1) 

= 
n(m − 1)ν̂x 

2 νy 
2 

� Fn−1,m−1
By/(m − 1) m(n − 1)ν̂2 ν2 

y x 

has Fm−1,n−1-distribution with (n − 1, m − 1) degrees of freedom. Let us consider a statistic 

F = 
n(m − 1)ν̂x 

2 νx 
2 

Fn−1,m−1. 
m(n − 1)ν̂2 

� 
ν2 

y y 

When ν2 = ν2 , we have F � Fn−1,m−1, when ν2 > ν2, F will tend to be above the ’typical x y x y 

range’ of Fn−1,m−1 distribution, and when ν2 < ν2, F will tend to be below the ’typical x y 

range’ of Fn−1,m−1 distribution. As a result, we get the following tests. 

I. (H0 : νx = νy.) The decision rule will be 

α = 
H0, if c1 ≈ F ≈ c2 

H1, if F < c1, c2 < F. 

Thresholds c1, c2 should satisfy the condition 

P(α = H1 H0) = P(F < c1 νx = νy) + P(F > c2 νx = νy)| | |
= Fn−1,m−1(0, c1) + Fn−1,m−1(c2, ) = �. →

For example, we can take 

Fn−1,m−1(0, c1) = and Fn−1,m−1(c2, ) = . 
2 

→
2 

II. (H0 : νx ≈ νy.) The decision rule will be 

α = 
H0, if F ≈ c 
H1, if F > c. 

Thresholds c should satisfy the condition 

P(α = H1|H0) = P(F > c|νx = νy) = Fn−1,m−1(c, →) = �. 

The test for H0 : νx ∼ νy is similar. 
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