## Lecture 6

## Gamma distribution, $\chi^{2}$-distribution, Student $t$-distribution, Fisher $F$-distribution.

Gamma distribution. Let us take two parameters $\alpha>0$ and $\beta>0$. Gamma function $\Gamma(\alpha)$ is defined by

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
$$

If we divide both sides by $\Gamma(\alpha)$ we get

$$
1=\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x} d x=\int_{0}^{\infty} \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} e^{-\beta y} d y
$$

where we made a change of variables $x=\beta y$. Therefore, if we define

$$
f(x \mid \alpha, \beta)= \begin{cases}\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

then $f(x \mid \alpha, \beta)$ will be a probability density function since it is nonnegative and it integrates to one.

Definition. The distribution with p.d.f. $f(x \mid \alpha, \beta)$ is called Gamma distribution with parameters $\alpha$ and $\beta$ and it is denoted as $\Gamma(\alpha, \beta)$.

Next, let us recall some properties of gamma function $\Gamma(\alpha)$. If we take $\alpha>1$ then using integration by parts we can write:

$$
\begin{aligned}
\Gamma(\alpha) & =\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x=\int_{0}^{\infty} x^{\alpha-1} d\left(-e^{-x}\right) \\
& =\left.x^{\alpha-1}\left(-e^{-x}\right)\right|_{0} ^{\infty}-\int_{0}^{\infty}\left(-e^{-x}\right)(\alpha-1) x^{\alpha-2} d x \\
& =(\alpha-1) \int_{0}^{\infty} x^{(\alpha-1)-1} e^{-x} d x=(\alpha-1) \Gamma(\alpha-1)
\end{aligned}
$$

Since for $\alpha=1$ we have

$$
\Gamma(1)=\int_{0}^{\infty} e^{-x} d x=1
$$

we can write

$$
\Gamma(2)=1 \cdot 1, \Gamma(3)=2 \cdot 1, \Gamma(4)=3 \cdot 2 \cdot 1, \Gamma(5)=4 \cdot 3 \cdot 2 \cdot 1
$$

and proceeding by induction we get that $\Gamma(n)=(n-1)$ !
Let us compute the $k$ th moment of gamma distribution. We have,

$$
\begin{aligned}
\mathbb{E} X^{k} & =\int_{0}^{\infty} x^{k} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} d x=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{(\alpha+k)-1} e^{-\beta x} d x \\
& =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+k)}{\beta^{\alpha+k}} \underbrace{\int_{0}^{\infty} \frac{\beta^{\alpha+k}}{\Gamma(\alpha+k)} x^{\alpha+k-1} e^{-\beta x} d x}_{\text {p.d.f. of } \Gamma(\alpha+k, \beta) \text { integrates to } 1} \\
& =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+k)}{\beta^{\alpha+k}}=\frac{\Gamma(\alpha+k)}{\Gamma(\alpha) \beta^{k}}=\frac{(\alpha+k-1) \Gamma(\alpha+k-1)}{\Gamma(\alpha) \beta^{k}} \\
& =\frac{(\alpha+k-1)(\alpha+k-2) \ldots \alpha \Gamma(\alpha)}{\Gamma(\alpha) \beta^{k}}=\frac{(\alpha+k-1) \cdots \alpha}{\beta^{k}} .
\end{aligned}
$$

Therefore, the mean is

$$
\mathbb{E} X=\frac{\alpha}{\beta}
$$

the second moment is

$$
\mathbb{E} X^{2}=\frac{(\alpha+1) \alpha}{\beta^{2}}
$$

and the variance

$$
\operatorname{Var}(X)=\mathbb{E} X^{2}-(\mathbb{E} X)^{2}=\frac{(\alpha+1) \alpha}{\beta^{2}}-\left(\frac{\alpha}{\beta}\right)^{2}=\frac{\alpha}{\beta^{2}}
$$

Below we will need the following property of Gamma distribution.
Lemma. If we have a sequence of independent random variables

$$
X_{1} \sim \Gamma\left(\alpha_{1}, \beta\right), \ldots, X_{n} \sim \Gamma\left(\alpha_{n}, \beta\right)
$$

then $X_{1}+\ldots+X_{n}$ has distribution $\Gamma\left(\alpha_{1}+\ldots+\alpha_{n}, \beta\right)$
Proof. If $X \sim \Gamma(\alpha, \beta)$ then a moment generating function (m.g.f.) of $X$ is

$$
\begin{aligned}
\mathbb{E} e^{t X} & =\int_{0}^{\infty} e^{t x} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} d x=\int_{0}^{\infty} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\beta-t) x} d x \\
& =\frac{\beta^{\alpha}}{(\beta-t)^{\alpha}} \underbrace{\int_{0}^{\infty} \frac{(\beta-t)^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\beta-t) x} d x}
\end{aligned}
$$

The function in the last (underbraced) integral is a p.d.f. of gamma distribution $\Gamma(\alpha, \beta-t)$ and, therefore, it integrates to 1 . We get,

$$
\mathbb{E} e^{t X}=\left(\frac{\beta}{\beta-t}\right)^{\alpha}
$$

Moment generating function of the sum $\sum_{i=1}^{n} X_{i}$ is

$$
\mathbb{E} e^{t \sum_{i=1}^{n} X_{i}}=\mathbb{E} \prod_{i=1}^{n} e^{t X_{i}}=\prod_{i=1}^{n} \mathbb{E} e^{t X_{i}}=\prod_{i=1}^{n}\left(\frac{\beta}{\beta-t}\right)^{\alpha_{i}}=\left(\frac{\beta}{\beta-t}\right)^{\sum \alpha_{i}}
$$

and this is again a m.g.f. of Gamma distibution, which means that

$$
\sum_{i=1}^{n} X_{i} \sim \Gamma\left(\sum_{i=1}^{n} \alpha_{i}, \beta\right)
$$

$\chi_{n}^{2}$-distribution. In the previous lecture we defined a $\chi_{n}^{2}$-distribution with $n$ degrees of freedom as a distribution of the sum $X_{1}^{2}+\ldots+X_{n}^{2}$, where $X_{i}$ s are i.i.d. standard normal. We will now show that which $\chi_{n}^{2}$-distribution coincides with a gamma distribution $\Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$, i.e.

$$
\chi_{n}^{2}=\Gamma\left(\frac{n}{2}, \frac{1}{2}\right)
$$

Consider a standard normal random variable $X \sim N(0,1)$. Let us compute the distribution of $X^{2}$. The c.d.f. of $X^{2}$ is given by

$$
\mathbb{P}\left(X^{2} \leq x\right)=\mathbb{P}(-\sqrt{x} \leq X \leq \sqrt{x})=\int_{-\sqrt{x}}^{\sqrt{x}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t
$$

The p.d.f. can be computed by taking a derivative $\frac{d}{d x} \mathbb{P}(X \leq x)$ and as a result the p.d.f. of $X^{2}$ is

$$
\begin{aligned}
f_{X^{2}}(x) & =\frac{d}{d x} \int_{-\sqrt{x}}^{\sqrt{x}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(\sqrt{x})^{2}}{2}}(\sqrt{x})^{\prime}-\frac{1}{\sqrt{2 \pi}} e^{-\frac{(-\sqrt{x})^{2}}{2}}(-\sqrt{x})^{\prime} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{x}} e^{-\frac{x}{2}}=\frac{1}{\sqrt{2 \pi}} x^{\frac{1}{2}-1} e^{-\frac{x}{2}}
\end{aligned}
$$

We see that this is p.d.f. of Gamma Distribution $\Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$, i.e. we proved that $X^{2} \sim \Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$. Using Lemma above proves that $X_{1}^{2}+\ldots+X_{n}^{2} \sim \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$.

Fisher $F$-distribution. Let us consider two independent random variables,

$$
X \sim \chi_{k}^{2}=\Gamma\left(\frac{k}{2}, \frac{1}{2}\right) \quad \text { and } \quad Y \sim \chi_{m}^{2}=\Gamma\left(\frac{m}{2}, \frac{1}{2}\right)
$$

Definition: Distribution of the random variable

$$
Z=\frac{X / k}{Y / m}
$$

is called $a$ Fisher distribution with degrees of freedom $k$ and $m$, is denoted by $F_{k, m}$.
First of all, let us notice that since $X \sim \chi_{k}^{2}$ can be represented as $X_{1}^{2}+\ldots+X_{k}^{2}$ for i.i.d. standard normal $X_{1}, \ldots, X_{k}$, by law of large numbers,

$$
\frac{1}{k}\left(X_{1}^{2}+\ldots+X_{k}^{2}\right) \rightarrow \mathbb{E} X_{1}^{2}=1
$$

when $k \rightarrow \infty$. This means that when $k$ is large, the numerator $X / k$ will 'concentrate' near 1. Similarly, when $m$ gets large, the denominator $Y / m$ will concentrate near 1 . This means that when both $k$ and $m$ get large, the distribution $F_{k, m}$ will concentrate near 1.

Another property that is sometimes useful when using the tables of $F$-distribution is that

$$
F_{k, m}(c, \infty)=F_{m, k}\left(0, \frac{1}{c}\right) .
$$

This is because

$$
F_{k, m}(c, \infty)=\mathbb{P}\left(\frac{X / k}{Y / m} \geq c\right)=\mathbb{P}\left(\frac{Y / m}{X / k} \leq \frac{1}{c}\right)=F_{m, k}\left(0, \frac{1}{c}\right)
$$

Next we will compute the p.d.f. of $Z \sim F_{k, m}$. Let us first compute the p.d.f. of

$$
\frac{k}{m} Z=\frac{X}{Y}
$$

The p.d.f. of $X$ and $Y$ are

$$
f(x)=\frac{\left(\frac{1}{2}\right)^{\frac{k}{2}}}{\Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2}-1} e^{-\frac{1}{2} x} \quad \text { and } \quad g(y)=\frac{\left(\frac{1}{2}\right)^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}\right)} y^{\frac{m}{2}-1} e^{-\frac{1}{2} y}
$$

correspondingly, where $x \geq 0$ and $y \geq 0$. To find the p.d.f of the ratio $X / Y$, let us first write its c.d.f. Since $X$ and $Y$ are always positive, their ratio is also positive and, therefore, for $t \geq 0$ we can write:

$$
\mathbb{P}\left(\frac{X}{Y} \leq t\right)=\mathbb{P}(X \leq t Y)=\int_{0}^{\infty}\left(\int_{0}^{t y} f(x) g(y) d x\right) d y
$$

since $f(x) g(y)$ is the joint density of $X, Y$. Since we integrate over the set $\{x \leq t y\}$ the limits of integration for $x$ vary from 0 to $t y$.

Since p.d.f. is the derivative of c.d.f., the p.d.f. of the ratio $X / Y$ can be computed as follows:

$$
\begin{aligned}
\frac{d}{d t} \mathbb{P}\left(\frac{X}{Y} \leq t\right) & =\frac{d}{d t} \int_{0}^{\infty} \int_{0}^{t y} f(x) g(y) d x d y=\int_{0}^{\infty} f(t y) g(y) y d y \\
& =\int_{0}^{\infty} \frac{\left(\frac{1}{2}\right)^{\frac{k}{2}}}{\Gamma\left(\frac{k}{2}\right)}(t y)^{\frac{k}{2}-1} e^{-\frac{1}{2} t y} \frac{\left(\frac{1}{2}\right)^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}\right)} y^{\frac{m}{2}-1} e^{-\frac{1}{2} y} y d y \\
& =\frac{\left(\frac{1}{2}\right)^{\frac{k+m}{2}}}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)} t^{\frac{k}{2}-1} \underbrace{\int_{0}^{\infty} y^{\left(\frac{k+m}{2}\right)-1} e^{-\frac{1}{2}(t+1) y} d y}
\end{aligned}
$$

The function in the underbraced integral almost looks like a p.d.f. of gamma distribution $\Gamma(\alpha, \beta)$ with parameters $\alpha=(k+m) / 2$ and $\beta=1 / 2$, only the constant in front is missing. If we miltiply and divide by this constant, we will get that,

$$
\begin{aligned}
\frac{d}{d t} \mathbb{P}\left(\frac{X}{Y} \leq t\right) & =\frac{\left(\frac{1}{2}\right)^{\frac{k+m}{2}}}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)} t^{\frac{k}{2}-1} \frac{\Gamma\left(\frac{k+m}{2}\right)}{\left(\frac{1}{2}(t+1)\right)^{\frac{k+m}{2}}} \int_{0}^{\infty} \frac{\left(\frac{1}{2}(t+1)\right)^{\frac{k+m}{2}}}{\Gamma\left(\frac{k+m}{2}\right)} y^{\left(\frac{k+m}{2}\right)-1} e^{-\frac{1}{2}(t+1) y} d y \\
& =\frac{\Gamma\left(\frac{k+m}{2}\right)}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)} t^{\frac{k}{2}-1}(1+t)^{\frac{k+m}{2}}
\end{aligned}
$$

since the p.d.f. integrates to 1 . To summarize, we proved that the p.d.f. of $(k / m) Z=X / Y$ is given by

$$
f_{X / Y}(t)=\frac{\Gamma\left(\frac{k+m}{2}\right)}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)} t^{\frac{k}{2}-1}(1+t)^{-\frac{k+m}{2}} .
$$

Since

$$
\mathbb{P}(Z \leq t)=\mathbb{P}\left(\frac{X}{Y} \leq \frac{k t}{m}\right) \Longrightarrow f_{Z}(t)=\frac{\partial}{\partial t} \mathbb{P}(Z \leq t)=f_{X / Y}\left(\frac{k t}{m}\right) \frac{k}{m}
$$

this proves that the p.d.f. of $F_{k, m}$-distribution is

$$
\begin{aligned}
f_{k, m}(t) & =\frac{\Gamma\left(\frac{k+m}{2}\right)}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)} \frac{k}{m}\left(\frac{k t}{m}\right)^{\frac{k}{2}-1}\left(1+\frac{k t}{m}\right)^{-\frac{k+m}{2}} \\
& =\frac{\Gamma\left(\frac{k+m}{2}\right)}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)} k^{k / 2} m^{m / 2} t^{\frac{k}{2}-1}(m+k t)^{-\frac{k+m}{2}}
\end{aligned}
$$

Student $t_{n}$-distribution. Let us recall that we defined $t_{n}$-distibution as the distribution of a random variable

$$
T=\frac{X_{1}}{\sqrt{\frac{1}{n}\left(Y_{1}^{2}+\cdots+Y_{n}^{2}\right)}}
$$

if $X_{1}, Y_{1}, \ldots, Y_{n}$ are i.i.d. standard normal. Let us compute the p.d.f. of $T$. First, we can write,

$$
\mathbb{P}(-t \leq T \leq t)=\mathbb{P}\left(T^{2} \leq t^{2}\right)=\mathbb{P}\left(\frac{X_{1}^{2}}{\left(Y_{1}^{2}+\cdots+Y_{n}^{2}\right) / n} \leq t^{2}\right)
$$

If $f_{T}(x)$ denotes the p.d.f. of $T$ then the left hand side can be written as

$$
\mathbb{P}(-t \leq T \leq t)=\int_{-t}^{t} f_{T}(x) d x
$$

On the other hand, by definition,

$$
\frac{X_{1}^{2}}{\left(Y_{1}^{2}+\ldots+Y_{n}^{2}\right) / n}
$$

has Fisher $F_{1, n}$-distribution and, therefore, the right hand side can be written as

$$
\int_{0}^{t^{2}} f_{1, n}(x) d x
$$

We get that,

$$
\int_{-t}^{t} f_{T}(x) d x=\int_{0}^{t^{2}} f_{1, n}(x) d x
$$

Taking derivative of both side with respect to $t$ gives

$$
f_{T}(t)+f_{T}(-t)=f_{1, n}\left(t^{2}\right) 2 t
$$

But $f_{T}(t)=f_{T}(-t)$ since the distribution of $T$ is obviously symmetric, because the numerator $X$ has symmetric distribution $N(0,1)$. This, finally, proves that

$$
f_{T}(t)=f_{1, n}\left(t^{2}\right) t=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \frac{1}{\sqrt{n}}\left(1+\frac{t^{2}}{n}\right)^{-\frac{n+1}{2}}
$$

