Lecture 6

Gamma distribution, χ^2 -distribution, Student *t*-distribution, Fisher *F*-distribution.

Gamma distribution. Let us take two parameters $\alpha > 0$ and $\beta > 0$. Gamma function $\Gamma(\alpha)$ is defined by

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

If we divide both sides by $\Gamma(\alpha)$ we get

$$1 = \int_0^\infty \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x} dx = \int_0^\infty \frac{\beta^\alpha}{\Gamma(\alpha)} y^{\alpha-1} e^{-\beta y} dy$$

where we made a change of variables $x = \beta y$. Therefore, if we define

$$f(x|\alpha,\beta) = \left\{ \begin{array}{ll} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, & x \geq 0 \\ 0, & x < 0 \end{array} \right.$$

then $f(x|\alpha,\beta)$ will be a probability density function since it is nonnegative and it integrates to one.

Definition. The distribution with p.d.f. $f(x|\alpha,\beta)$ is called Gamma distribution with parameters α and β and it is denoted as $\Gamma(\alpha,\beta)$.

Next, let us recall some properties of gamma function $\Gamma(\alpha)$. If we take $\alpha > 1$ then using integration by parts we can write:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx = \int_0^\infty x^{\alpha-1} d(-e^{-x})$$

= $x^{\alpha-1}(-e^{-x}) \Big|_0^\infty - \int_0^\infty (-e^{-x})(\alpha-1) x^{\alpha-2} dx$
= $(\alpha-1) \int_0^\infty x^{(\alpha-1)-1} e^{-x} dx = (\alpha-1) \Gamma(\alpha-1).$

Since for $\alpha = 1$ we have

$$\Gamma(1) = \int_0^\infty e^{-x} dx = 1$$

we can write

$$\Gamma(2) = 1 \cdot 1, \ \Gamma(3) = 2 \cdot 1, \ \Gamma(4) = 3 \cdot 2 \cdot 1, \ \Gamma(5) = 4 \cdot 3 \cdot 2 \cdot 1$$

and proceeding by induction we get that $\Gamma(n) = (n-1)!$

Let us compute the kth moment of gamma distribution. We have,

$$\begin{split} \mathbb{E}X^{k} &= \int_{0}^{\infty} x^{k} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} dx = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{(\alpha+k)-1} e^{-\beta x} dx \\ &= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+k)}{\beta^{\alpha+k}} \underbrace{\int_{0}^{\infty} \frac{\beta^{\alpha+k}}{\Gamma(\alpha+k)} x^{\alpha+k-1} e^{-\beta x} dx}_{p.d.f. of \ \Gamma(\alpha+k,\beta) \ integrates \ to \ 1} \\ &= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+k)}{\beta^{\alpha+k}} = \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)\beta^{k}} = \frac{(\alpha+k-1)\Gamma(\alpha+k-1)}{\Gamma(\alpha)\beta^{k}} \\ &= \frac{(\alpha+k-1)(\alpha+k-2)\dots\alpha\Gamma(\alpha)}{\Gamma(\alpha)\beta^{k}} = \frac{(\alpha+k-1)\dots\alpha}{\beta^{k}}. \end{split}$$

Therefore, the mean is

$$\mathbb{E}X = \frac{\alpha}{\beta}$$

the second moment is

$$\mathbb{E}X^2 = \frac{(\alpha+1)\alpha}{\beta^2}$$

and the variance

$$\operatorname{Var}(X) = \mathbb{E}X^2 - (\mathbb{E}X)^2 = \frac{(\alpha+1)\alpha}{\beta^2} - \left(\frac{\alpha}{\beta}\right)^2 = \frac{\alpha}{\beta^2}$$

Below we will need the following property of Gamma distribution.

Lemma. If we have a sequence of independent random variables

$$X_1 \sim \Gamma(\alpha_1, \beta), \dots, X_n \sim \Gamma(\alpha_n, \beta)$$

then $X_1 + \ldots + X_n$ has distribution $\Gamma(\alpha_1 + \ldots + \alpha_n, \beta)$ **Proof.** If $X \sim \Gamma(\alpha, \beta)$ then a moment generating function (m.g.f.) of X is

$$\mathbb{E}e^{tX} = \int_0^\infty e^{tx} \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} dx = \int_0^\infty \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\beta-t)x} dx$$
$$= \frac{\beta^\alpha}{(\beta-t)^\alpha} \underbrace{\int_0^\infty \frac{(\beta-t)^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\beta-t)x} dx}_{\alpha-1}.$$

The function in the last (underbraced) integral is a p.d.f. of gamma distribution $\Gamma(\alpha, \beta - t)$ and, therefore, it integrates to 1. We get,

$$\mathbb{E}e^{tX} = \left(\frac{\beta}{\beta - t}\right)^{\alpha}.$$

Moment generating function of the sum $\sum_{i=1}^{n} X_i$ is

$$\mathbb{E}e^{t\sum_{i=1}^{n}X_{i}} = \mathbb{E}\prod_{i=1}^{n}e^{tX_{i}} = \prod_{i=1}^{n}\mathbb{E}e^{tX_{i}} = \prod_{i=1}^{n}\left(\frac{\beta}{\beta-t}\right)^{\alpha_{i}} = \left(\frac{\beta}{\beta-t}\right)^{\sum\alpha_{i}}$$

and this is again a m.g.f. of Gamma distibution, which means that

$$\sum_{i=1}^{n} X_i \sim \Gamma\left(\sum_{i=1}^{n} \alpha_i, \beta\right).$$

г	
L	

 χ_n^2 -distribution. In the previous lecture we defined a χ_n^2 -distribution with *n* degrees of freedom as a distribution of the sum $X_1^2 + \ldots + X_n^2$, where X_i s are i.i.d. standard normal. We will now show that which χ_n^2 -distribution coincides with a gamma distribution $\Gamma(\frac{n}{2}, \frac{1}{2})$, i.e.

$$\chi_n^2 = \Gamma\left(\frac{n}{2}, \frac{1}{2}\right).$$

Consider a standard normal random variable $X \sim N(0, 1)$. Let us compute the distribution of X^2 . The c.d.f. of X^2 is given by

$$\mathbb{P}(X^{2} \le x) = \mathbb{P}(-\sqrt{x} \le X \le \sqrt{x}) = \int_{-\sqrt{x}}^{\sqrt{x}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt$$

The p.d.f. can be computed by taking a derivative $\frac{d}{dx}\mathbb{P}(X \leq x)$ and as a result the p.d.f. of X^2 is

$$f_{X^{2}}(x) = \frac{d}{dx} \int_{-\sqrt{x}}^{\sqrt{x}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt = \frac{1}{\sqrt{2\pi}} e^{-\frac{(\sqrt{x})^{2}}{2}} (\sqrt{x})' - \frac{1}{\sqrt{2\pi}} e^{-\frac{(-\sqrt{x})^{2}}{2}} (-\sqrt{x})'$$
$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{x}} e^{-\frac{x}{2}} = \frac{1}{\sqrt{2\pi}} x^{\frac{1}{2}-1} e^{-\frac{x}{2}}.$$

We see that this is p.d.f. of Gamma Distribution $\Gamma(\frac{1}{2}, \frac{1}{2})$, i.e. we proved that $X^2 \sim \Gamma(\frac{1}{2}, \frac{1}{2})$. Using Lemma above proves that $X_1^2 + \ldots + X_n^2 \sim \Gamma(\frac{n}{2}, \frac{1}{2})$.

Fisher F-distribution. Let us consider two independent random variables,

$$X \sim \chi_k^2 = \Gamma\left(\frac{k}{2}, \frac{1}{2}\right)$$
 and $Y \sim \chi_m^2 = \Gamma\left(\frac{m}{2}, \frac{1}{2}\right)$.

Definition: Distribution of the random variable

$$Z = \frac{X/k}{Y/m}$$

is called a Fisher distribution with degrees of freedom k and m, is denoted by $F_{k,m}$.

First of all, let us notice that since $X \sim \chi_k^2$ can be represented as $X_1^2 + \ldots + X_k^2$ for i.i.d. standard normal X_1, \ldots, X_k , by law of large numbers,

$$\frac{1}{k}(X_1^2 + \ldots + X_k^2) \to \mathbb{E}X_1^2 = 1$$

when $k \to \infty$. This means that when k is large, the numerator X/k will 'concentrate' near 1. Similarly, when m gets large, the denominator Y/m will concentrate near 1. This means that when both k and m get large, the distribution $F_{k,m}$ will concentrate near 1.

Another property that is sometimes useful when using the tables of F-distribution is that

$$F_{k,m}(c,\infty) = F_{m,k}\left(0,\frac{1}{c}\right).$$

This is because

$$F_{k,m}(c,\infty) = \mathbb{P}\left(\frac{X/k}{Y/m} \ge c\right) = \mathbb{P}\left(\frac{Y/m}{X/k} \le \frac{1}{c}\right) = F_{m,k}\left(0,\frac{1}{c}\right).$$

Next we will compute the p.d.f. of $Z \sim F_{k,m}$. Let us first compute the p.d.f. of

$$\frac{k}{m}Z = \frac{X}{Y}.$$

The p.d.f. of X and Y are

$$f(x) = \frac{\left(\frac{1}{2}\right)^{\frac{k}{2}}}{\Gamma(\frac{k}{2})} x^{\frac{k}{2}-1} e^{-\frac{1}{2}x} \text{ and } g(y) = \frac{\left(\frac{1}{2}\right)^{\frac{m}{2}}}{\Gamma(\frac{m}{2})} y^{\frac{m}{2}-1} e^{-\frac{1}{2}y}$$

correspondingly, where $x \ge 0$ and $y \ge 0$. To find the p.d.f of the ratio X/Y, let us first write its c.d.f. Since X and Y are always positive, their ratio is also positive and, therefore, for $t \ge 0$ we can write:

$$\mathbb{P}\Big(\frac{X}{Y} \le t\Big) = \mathbb{P}(X \le tY) = \int_0^\infty \Big(\int_0^{ty} f(x)g(y)dx\Big)dy$$

since f(x)g(y) is the joint density of X, Y. Since we integrate over the set $\{x \le ty\}$ the limits of integration for x vary from 0 to ty.

Since p.d.f. is the derivative of c.d.f., the p.d.f. of the ratio X/Y can be computed as follows:

$$\begin{split} \frac{d}{dt} \mathbb{P}\Big(\frac{X}{Y} \le t\Big) &= \frac{d}{dt} \int_0^\infty \int_0^{ty} f(x)g(y)dxdy = \int_0^\infty f(ty)g(y)ydy\\ &= \int_0^\infty \frac{\left(\frac{1}{2}\right)^{\frac{k}{2}}}{\Gamma(\frac{k}{2})}(ty)^{\frac{k}{2}-1}e^{-\frac{1}{2}ty}\frac{\left(\frac{1}{2}\right)^{\frac{m}{2}}}{\Gamma(\frac{m}{2})}y^{\frac{m}{2}-1}e^{-\frac{1}{2}y}ydy\\ &= \frac{\left(\frac{1}{2}\right)^{\frac{k+m}{2}}}{\Gamma(\frac{k}{2})\Gamma(\frac{m}{2})}t^{\frac{k}{2}-1}\underbrace{\int_0^\infty y^{(\frac{k+m}{2})-1}e^{-\frac{1}{2}(t+1)y}dy}_{0} \end{split}$$

The function in the underbraced integral almost looks like a p.d.f. of gamma distribution $\Gamma(\alpha, \beta)$ with parameters $\alpha = (k + m)/2$ and $\beta = 1/2$, only the constant in front is missing. If we miltiply and divide by this constant, we will get that,

$$\begin{split} \frac{d}{dt} \mathbb{P}\Big(\frac{X}{Y} \le t\Big) &= \frac{\left(\frac{1}{2}\right)^{\frac{k+m}{2}}}{\Gamma(\frac{k}{2})\Gamma(\frac{m}{2})} t^{\frac{k}{2}-1} \frac{\Gamma(\frac{k+m}{2})}{\left(\frac{1}{2}(t+1)\right)^{\frac{k+m}{2}}} \int_{0}^{\infty} \frac{\left(\frac{1}{2}(t+1)\right)^{\frac{k+m}{2}}}{\Gamma(\frac{k+m}{2})} y^{(\frac{k+m}{2})-1} e^{-\frac{1}{2}(t+1)y} dy \\ &= \frac{\Gamma(\frac{k+m}{2})}{\Gamma(\frac{k}{2})\Gamma(\frac{m}{2})} t^{\frac{k}{2}-1} (1+t)^{\frac{k+m}{2}}, \end{split}$$

since the p.d.f. integrates to 1. To summarize, we proved that the p.d.f. of (k/m)Z = X/Y is given by

$$f_{X/Y}(t) = \frac{\Gamma(\frac{k+m}{2})}{\Gamma(\frac{k}{2})\Gamma(\frac{m}{2})} t^{\frac{k}{2}-1} (1+t)^{-\frac{k+m}{2}}.$$

Since

$$\mathbb{P}(Z \le t) = \mathbb{P}\left(\frac{X}{Y} \le \frac{kt}{m}\right) \implies f_Z(t) = \frac{\partial}{\partial t}\mathbb{P}(Z \le t) = f_{X/Y}\left(\frac{kt}{m}\right)\frac{k}{m},$$

this proves that the p.d.f. of $F_{k,m}$ -distribution is

$$f_{k,m}(t) = \frac{\Gamma(\frac{k+m}{2})}{\Gamma(\frac{k}{2})\Gamma(\frac{m}{2})} \frac{k}{m} \left(\frac{kt}{m}\right)^{\frac{k}{2}-1} \left(1 + \frac{kt}{m}\right)^{-\frac{k+m}{2}}.$$

$$= \frac{\Gamma(\frac{k+m}{2})}{\Gamma(\frac{k}{2})\Gamma(\frac{m}{2})} k^{k/2} m^{m/2} t^{\frac{k}{2}-1} (m+kt)^{-\frac{k+m}{2}}.$$

Student t_n -distribution. Let us recall that we defined t_n -distibution as the distribution of a random variable

$$T = \frac{X_1}{\sqrt{\frac{1}{n}(Y_1^2 + \dots + Y_n^2)}}$$

if X_1, Y_1, \ldots, Y_n are i.i.d. standard normal. Let us compute the p.d.f. of T. First, we can write,

$$\mathbb{P}(-t \le T \le t) = \mathbb{P}(T^2 \le t^2) = \mathbb{P}\Big(\frac{X_1^2}{(Y_1^2 + \dots + Y_n^2)/n} \le t^2\Big).$$

If $f_T(x)$ denotes the p.d.f. of T then the left hand side can be written as

$$\mathbb{P}(-t \le T \le t) = \int_{-t}^{t} f_T(x) dx.$$

On the other hand, by definition,

$$\frac{X_1^2}{(Y_1^2 + \ldots + Y_n^2)/n}$$

has Fisher $F_{1,n}$ -distribution and, therefore, the right hand side can be written as

$$\int_0^{t^2} f_{1,n}(x) dx.$$

We get that,

$$\int_{-t}^{t} f_T(x) dx = \int_{0}^{t^2} f_{1,n}(x) dx.$$

Taking derivative of both side with respect to t gives

$$f_T(t) + f_T(-t) = f_{1,n}(t^2)2t.$$

But $f_T(t) = f_T(-t)$ since the distribution of T is obviously symmetric, because the numerator X has symmetric distribution N(0, 1). This, finally, proves that

$$f_T(t) = f_{1,n}(t^2)t = \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{1}{2})\Gamma(\frac{n}{2})} \frac{1}{\sqrt{n}} (1 + \frac{t^2}{n})^{-\frac{n+1}{2}}.$$

	r		