Lecture 4

Multivariate normal distribution and multivariate CLT.

We start with several simple observations. If $X=\left(x_{1}, \ldots, x_{k}\right)^{T}$ is a $k \times 1$ random vector then its expectation is

$$
\mathbb{E} X=\left(\mathbb{E} x_{1}, \ldots, \mathbb{E} x_{k}\right)^{T}
$$

and its covariance matrix is

$$
\operatorname{Cov}(X)=\mathbb{E}(X-\mathbb{E} X)(X-\mathbb{E} X)^{T}
$$

Notice that a covariance matrix is always symmetric

$$
\operatorname{Cov}(X)^{T}=\operatorname{Cov}(X)
$$

and nonnegative definite, i.e. for any $k \times 1$ vector a,

$$
a^{T} \operatorname{Cov}(X) a=\mathbb{E} a^{T}(X-\mathbb{E} X)(X-\mathbb{E} X)^{T} a^{T}=\mathbb{E}\left|a^{T}(X-\mathbb{E} X)\right|^{2} \geq 0
$$

We will often use that for any vector X its squared length can be written as $|X|^{2}=X^{T} X$. If we multiply a random $k \times 1$ vector X by a $n \times k$ matrix A then the covariance of $Y=A X$ is a $n \times n$ matrix

$$
\operatorname{Cov}(Y)=\mathbb{E} A(X-\mathbb{E} X)(X-\mathbb{E} X)^{T} A^{T}=A \operatorname{Cov}(X) A^{T}
$$

Multivariate normal distribution. Let us consider a $k \times 1$ vector $g=\left(g_{1}, \ldots, g_{k}\right)^{T}$ of i.i.d. standard normal random variables. The covariance of g is, obviously, a $k \times k$ identity matrix, $\operatorname{Cov}(g)=I$. Given a $n \times k$ matrix A, the covariance of $A g$ is a $n \times n$ matrix

$$
\Sigma:=\operatorname{Cov}(A g)=A I A^{T}=A A^{T}
$$

Definition. The distribution of a vector Ag is called a (multivariate) normal distribution with covariance Σ and is denoted $N(0, \Sigma)$.

One can also shift this disrtibution, the distribution of $A g+a$ is called a normal distribution with mean a and covariance Σ and is denoted $N(a, \Sigma)$. There is one potential problem
with the above definition - we assume that the distribution depends only on covariance matrix Σ and does not depend on the construction, i.e. the choice of g and a matrix A. For example, if we take a $m \times 1$ vector g^{\prime} of i.i.d. standard normal random variables and a $n \times m$ matrix B then the covariance of $B g^{\prime}$ is a $n \times n$ matrix

$$
\operatorname{Cov}\left(B g^{\prime}\right)=B B^{T} .
$$

It is possible that $\Sigma=A A^{T}=B B^{T}$ so both constructions should give a normal distribution $N(0, \Sigma)$. This is, indeed, true - the distribution of $A g$ and $B g^{\prime}$ is the same, so the definition of normal distribution $N(0, \Sigma)$ does not depend on the construction. It is not very difficult to prove that $A g$ and $B g^{\prime}$ have the same distribution, but we will only show the simplest case.

Invertible case. Suppose that A and B are both square $n \times n$ invertible matrices. In this case, vectors $A g$ and $B g^{\prime}$ have density which we will now compute. Since the density of g is

$$
\prod_{i \leq n} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x_{i}^{2}\right)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \exp \left(-\frac{1}{2}|x|^{2}\right)
$$

for any set $\Omega \in \mathbb{R}^{n}$ we can write

$$
\mathbb{P}(A g \in \Omega)=\mathbb{P}\left(g \in A^{-1} \Omega\right)=\int_{A^{-1} \Omega}\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \exp \left(-\frac{1}{2}|x|^{2}\right) d x
$$

Let us now make the change of variables $y=A x$ or $x=A^{-1} y$. Then

$$
\mathbb{P}(A g \in \Omega)=\int_{\Omega}\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \exp \left(-\frac{1}{2}\left|A^{-1} y\right|^{2}\right) \frac{1}{|\operatorname{det}(A)|} d y
$$

But since

$$
\operatorname{det}(\Sigma)=\operatorname{det}\left(A A^{T}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)^{2}
$$

we have $|\operatorname{det}(A)|=\sqrt{\operatorname{det}(\Sigma)}$. Also

$$
\left|A^{-1} y\right|^{2}=\left(A^{-1} y\right)^{T}\left(A^{-1} y\right)=y^{T}\left(A^{T}\right)^{-1} A^{-1} y=y^{T}\left(A A^{T}\right)^{-1} y=y^{T} \Sigma^{-1} y
$$

Therefore, we get

$$
\mathbb{P}(A g \in \Omega)=\int_{\Omega}\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \frac{1}{\sqrt{\operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2} y^{T} \Sigma^{-1} y\right) d y
$$

This means that a vector $A g$ has the density

$$
\frac{1}{\sqrt{\operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2} y^{T} \Sigma^{-1} y\right)
$$

which depends only on Σ and not on A. This means that $A g$ and $B g^{\prime}$ have the same distributions.

It is not difficult to show that in a general case the distribution of $A g$ depends only on the covariance Σ, but we will omit this here. Many times in these lectures whenever we want to represent a normal distribution $N(0, \Sigma)$ constructively, we will find a matrix A (not necessarily square) such that $\Sigma=A A^{T}$ and use the fact that a vector $A g$ for i.i.d. vector g has normal distribution $N(0, \Sigma)$. One way to find such A is to take a matrix square-root of Σ. Since Σ is a symmetric nonnegative definite matrix, its eigenvalue decomposition is

$$
\Sigma=Q D Q^{T}
$$

for an orthogonal matrix Q and a diagonal matrix D with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of Σ on the diagonal. In Matlab, '[Q,D]=eig(Sigma);' will produce this decomposition. Then if $D^{1 / 2}$ represents a diagonal matrix with $\lambda_{i}^{1 / 2}$ on the diagonal then one can take

$$
A=Q D^{1 / 2} \quad \text { or } \quad A=Q D^{1 / 2} Q^{T} .
$$

It is easy to check that in both cases $A A^{T}=Q D Q^{T}=\Sigma$. In Matlab $Q D^{1 / 2} Q^{T}$ is given by 'sqrtm(Sigma)'. Let us take, for example, a vector $X=Q D^{1 / 2} g$ for i.i.d. standard normal vector g which by definition has normal distribution $N(0, \Sigma)$. If q_{1}, \ldots, q_{n} are the column vectors of Q then

$$
X=Q D^{1 / 2} g=\left(\lambda_{1}^{1 / 2} g_{1}\right) q_{1}+\ldots+\left(\lambda_{n}^{1 / 2} g_{n}\right) q_{n}
$$

Therefore, in the orthonormal coordinate basis q_{1}, \ldots, q_{n} a random vector X has coordinates $\lambda_{1}^{1 / 2} g_{1}, \ldots, \lambda_{n}^{1 / 2} g_{n}$. These coordinates are independent with normal distributions with variances $\lambda_{1}, \ldots, \lambda_{n}$ correspondingly. When $\operatorname{det} \Sigma=0$, i.e. Σ is not invertible, some of its eigenvalues will be zero, say, $\lambda_{k+1}=\ldots=\lambda_{n}=0$. Then the random vector will be concentrated on the subspace spanned by vectors q_{1}, \ldots, q_{k} but it will not have density on the entire space \mathbb{R}^{n}. On the subspace spanned by vectors q_{1}, \ldots, q_{k} a vector X will have a density

$$
f\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} \frac{1}{\sqrt{2 \pi \lambda_{i}}} \exp \left(-\frac{x_{i}^{2}}{2 \lambda_{i}}\right)
$$

Linear transformation of a normal random vector.

Suppose that Y is a $n \times 1$ random vector with normal distribution $N(0, \Sigma)$. Then given a $m \times n$ matrix M, a $m \times 1$ vector $M Y$ will also have normal distribution $N\left(0, M \Sigma M^{T}\right)$. To show this, find any matrix A and i.i.d. standard normal vector g such that $A g$ has normal distribution $N(0, \Sigma)$. Then, by definition, $M(A g)=(M A) g$ also has normal distribution with covariance

$$
(M A)(M A)^{T}=M A A^{T} M^{T}=M \Sigma M^{T}
$$

Orthogonal transformation of an i.i.d. standard normal sample.

Throughout the lectures we will often use the following simple fact. Consider a vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ of i.i.d. random variables with standard normal distribution $N(0,1)$. If V is an orthogonal $n \times n$ matrix then the vector $Y:=V X$ also consists of i.i.d. random
variables Y_{1}, \ldots, Y_{n} with standard normal distribution. A matrix V is orthogonal when one of the following equivalent properties hold:

1. $V^{-1}=V^{T}$.
2. The rows of V form an orthonormal basis in \mathbb{R}^{n}.
3. The columns of V form an orthonormal basis in \mathbb{R}^{n}.
4. For any $x \in \mathbb{R}^{n}$ we have $|V x|=|x|$, i.e. V preserves the lengths of vectors.

Below we will use that $|\operatorname{det}(V)|=1$. Basically, orthogonal transformations represent linear transformations that preserve distances between points, such as rotations and reflections. The joint p.d.f of a vector X is given by

$$
f(x)=f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-x_{i}^{2} / 2}=\frac{1}{(\sqrt{2 \pi})^{n}} e^{-|x|^{2} / 2}
$$

where $|x|^{2}=x_{1}^{2}+\ldots+x_{n}^{2}$. To find the p.d.f. of a vector $Y=V X$, which is an linear transformation of X, we can use the change of density formula from probability or the change of variables formula from calculus as follows. For any set $\Omega \subseteq \mathbb{R}^{n}$,

$$
\begin{aligned}
\mathbb{P}(Y \in \Omega) & =\mathbb{P}(V X \in \Omega)=\mathbb{P}\left(X \in V^{-1} \Omega\right) \\
& =\int_{V^{-1} \Omega} f(x) d x=\int_{\Omega} \frac{f\left(V^{-1} y\right)}{|\operatorname{det}(V)|} d y .
\end{aligned}
$$

where we made the change of variables $y=V x$. We know that $|\operatorname{det}(V)|=1$ and, since $\left|V^{-1} y\right|=|y|$, we have

$$
f\left(V^{-1} y\right)=\frac{1}{(\sqrt{2 \pi})^{n}} e^{-\left|V^{-1} y\right|^{2} / 2}=\frac{1}{(\sqrt{2 \pi})^{n}} e^{-|y|^{2} / 2}=f(y) .
$$

Therefore, we finally get that

$$
\mathbb{P}(Y \in \Omega)=\int_{\Omega} f(y) d y
$$

which proves that a vector Y has the same joint p.d.f. as X.

Multivariate CLT.

We will state a multivariate Central Limit Theorem without a proof. Suppose that $X=\left(x_{1}, \ldots, x_{k}\right)^{T}$ is a random vector with covariance Σ. We assumed that $\mathbb{E} x_{i}^{2}<\infty$. If X_{1}, X_{2}, \ldots is a sequence of i.i.d. copies of X then

$$
S_{n}:=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\mathbb{E} X_{i}\right) \rightarrow^{d} N(0, \Sigma)
$$

where convergence in distribution \rightarrow^{d} means that for any set $\Omega \in \mathbb{R}^{k}$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(S_{n} \in \Omega\right)=\mathbb{P}(Y \in \Omega)
$$

for a random vector Y with normal distribution $N(0, \Sigma)$.

