Section 11

Goodness-of-fit for composite hypotheses.

Example. Let us consider a Matlab example. Let us generate 50 observations from $N(1,2)$:
$\mathrm{X}=$ normrnd $(1,2,50,1)$;
Then, running a chi-squared goodness-of-fit test 'chi2gof'
[H,P,STATS] = chi2gof (X)
outputs

```
H = 0, P = 0.8793,
STATS = chi2stat: 0.6742
    df: 3
    edges: [-3.7292 -0.9249 0.0099 0.9447 1.8795 2.8142 5.6186]
    0: [8 7 8 8 9 10]
    E: [8.7743 7.0639 8.7464 8.8284 7.2645 9.3226]
```

The test accepts the hypothesis that the data is normal. Notice, however, that something is different. Matlab grouped the data into 6 intervals, so chi-squared test from previous lecture should have $r-1=6-1=5$ degrees of freedom, but we have 'df: 3'! The difference is that now our hypothesis is not that the data comes from a particular given distribution but that the data comes from a family of distributions which is called a composite hypothesis. Running
[H,P,STATS]= chi2gof(X,'cdf', ©(z)normcdf(z,mean(X),std(X,1)))
would test a simple hypothesis that the data comes from a particular normal distribution $N\left(\hat{\mu}, \hat{\sigma}^{2}\right)$ and the output
$H=0, P=0.9838$
STATS = chi2stat: 0.6842
df : 5
edges: $\left[\begin{array}{lllllll}-3.7292 & -0.9249 & 0.0099 & 0.9447 & 1.8795 & 2.8142 & 5.6186\end{array}\right]$
0: [$\left.\begin{array}{llllll}8 & 7 & 8 & 8 & 9 & 10\end{array}\right]$
E: $\left[\begin{array}{llllll}8.6525 & 7.0995 & 8.8282 & 8.9127 & 7.3053 & 9.2017\end{array}\right]$
has 'df: 5.' However, we can not use this test because we estimate the parameters $\hat{\mu}$ and $\hat{\sigma}^{2}$ of this distribution using the data so this is not a particular given distribution; in fact, this is the distribution that fits the data the best, so the T statistic in Pearson's theorem will behave differently.

Let us start with a discrete case when a random variable takes a finite number of values B_{1}, \ldots, B_{r} with probabilities

$$
p_{1}=\mathbb{P}\left(X=B_{1}\right), \ldots, p_{r}=\mathbb{P}\left(X=B_{r}\right) .
$$

We would like to test a hypothesis that this distribution comes from a family of distributions $\left\{\mathbb{P}_{\theta}: \theta \in \Theta\right\}$. In other words, if we denote

$$
p_{j}(\theta)=\mathbb{P}_{\theta}\left(X=B_{j}\right),
$$

we want to test

$$
\begin{aligned}
& H_{0}: \quad p_{j}=p_{j}(\theta) \text { for all } j \leq r \text { for some } \theta \in \Theta \\
& H_{1}: \text { otherwise. }
\end{aligned}
$$

If we wanted to test H_{0} for one particular fixed θ we could use the statistic

$$
T=\sum_{j=1}^{r} \frac{\left(\nu_{j}-n p_{j}(\theta)\right)^{2}}{n p_{j}(\theta)}
$$

and use a simple chi-squared goodness-of-fit test. The situation now is more complicated because we want to test if $p_{j}=p_{j}(\theta), j \leq r$ at least for some $\theta \in \Theta$ which means that we have many candidates for θ. One way to approach this problem is as follows.
(Step 1) Assuming that hypothesis H_{0} holds, i.e. $\mathbb{P}=\mathbb{P}_{\theta}$ for some $\theta \in \Theta$, we can find an estimate θ^{*} of this unknown θ and then
(Step 2) try to test if, indeed, the distribution \mathbb{P} is equal to $\mathbb{P}_{\theta^{*}}$ by using the statistics

$$
T=\sum_{j=1}^{r} \frac{\left(\nu_{j}-n p_{j}\left(\theta^{*}\right)\right)^{2}}{n p_{j}\left(\theta^{*}\right)}
$$

in chi-squared goodness-of-fit test.
This approach looks natural, the only question is what estimate θ^{*} to use and how the fact that θ^{*} also depends on the data will affect the convergence of T. It turns out that if we let θ^{*} be the maximum likelihood estimate, i.e. θ that maximizes the likelihood function

$$
\varphi(\theta)=p_{1}(\theta)^{\nu_{1}} \ldots p_{r}(\theta)^{\nu_{r}}
$$

then the statistic

$$
\begin{equation*}
T=\sum_{j=1}^{r} \frac{\left(\nu_{j}-n p_{j}\left(\theta^{*}\right)\right)^{2}}{n p_{j}\left(\theta^{*}\right)} \rightarrow^{d} \chi_{r-s-1}^{2} \tag{11.0.1}
\end{equation*}
$$

converges to χ_{r-s-1}^{2} distribution with $r-s-1$ degrees of freedom, where s is the dimension of the parameter set Θ. Of course, here we assume that $s \leq r-2$ so that we have at least one degree of freedom. Very informally, by dimension we understand the number of free parameters that describe the set

$$
\left\{\left(p_{1}(\theta), \ldots, p_{r}(\theta)\right): \theta \in \Theta\right\} .
$$

Then the decision rule will be

$$
\delta= \begin{cases}H_{1}: & T \leq c \\ H_{2}: & T>c\end{cases}
$$

where the threshold c is determined from the condition

$$
\mathbb{P}\left(\delta \neq H_{0} \mid H_{0}\right)=\mathbb{P}\left(T>c \mid H_{0}\right) \approx \chi_{r-s-1}^{2}(c,+\infty)=\alpha
$$

where $\alpha \in[0,1]$ is the level of sidnificance.
Example 1. Suppose that a gene has two possible alleles A_{1} and A_{2} and the combinations of these alleles define three genotypes $A_{1} A_{1}, A_{1} A_{2}$ and $A_{2} A_{2}$. We want to test a theory that

$$
\text { Probability to pass } A_{1} \text { to a child }=\theta
$$

Probability to pass A_{2} to a child $=1-\theta$
and that the probabilities of genotypes are given by

$$
\begin{align*}
& p_{1}(\theta)=\mathbb{P}\left(A_{1} A_{1}\right)=\theta^{2} \\
& p_{2}(\theta)=\mathbb{P}\left(A_{1} A_{2}\right)=2 \theta(1-\theta) \tag{11.0.2}\\
& p_{3}(\theta)=\mathbb{P}\left(A_{2} A_{2}\right)=(1-\theta)^{2}
\end{align*}
$$

Suppose that given a random sample X_{1}, \ldots, X_{n} from the population the counts of each genotype are ν_{1}, ν_{2} and ν_{3}. To test the theory we want to test the hypothesis

$$
\begin{array}{ll}
H_{0}: & p_{1}=p_{1}(\theta), p_{2}=p_{2}(\theta), p_{3}=p_{3}(\theta) \text { for some } \theta \in[0,1] \\
H_{1}: & \text { otherwise. }
\end{array}
$$

First of all, the dimension of the parameter set is $s=1$ since the distributions are determined by one parameter θ. To find the MLE θ^{*} we have to maximize the likelihood function

$$
p_{1}(\theta)^{\nu_{1}} p_{2}(\theta)^{\nu_{2}} p_{3}(\theta)^{\nu_{3}}
$$

or, equivalently, maximize the log-likelihood

$$
\begin{aligned}
\log p_{1}(\theta)^{\nu_{1}} p_{2}(\theta)^{\nu_{2}} p_{3}(\theta)^{\nu_{3}} & =\nu_{1} \log p_{1}(\theta)+\nu_{2} \log p_{2}(\theta)+\nu_{3} \log p_{3}(\theta) \\
& =\nu_{1} \log \theta^{2}+\nu_{2} \log 2 \theta(1-\theta)+\nu_{3} \log (1-\theta)^{2}
\end{aligned}
$$

If we compute the critical point by setting the derivative equal to 0 , we get

$$
\theta^{*}=\frac{2 \nu_{1}+\nu_{2}}{2 n}
$$

Therefore, under the null hypothesis H_{0} the statistic

$$
\begin{aligned}
T & =\frac{\left(\nu_{1}-n p_{1}\left(\theta^{*}\right)\right)^{2}}{n p_{1}\left(\theta^{*}\right)}+\frac{\left(\nu_{2}-n p_{2}\left(\theta^{*}\right)\right)^{2}}{n p_{2}\left(\theta^{*}\right)}+\frac{\left(\nu_{3}-n p_{3}\left(\theta^{*}\right)\right)^{2}}{n p_{3}\left(\theta^{*}\right)} \\
& \rightarrow^{d} \chi_{r-s-1}^{2}=\chi_{3-1-1}^{2}=\chi_{1}^{2}
\end{aligned}
$$

converges to χ_{1}^{2}-distribution with one degree of freedom. Therefore, in the decision rule

$$
\delta= \begin{cases}H_{1}: & T \leq c \\ H_{2}: & T>c\end{cases}
$$

threshold c is determined by the condition

$$
\mathbb{P}\left(\delta \neq H_{0} \mid H_{0}\right) \approx \chi_{1}^{2}(T>c)=\alpha
$$

For example, if $\alpha=0.05$ then $c=3.841$.

Example 2. A blood type $O, A, B, A B$ is determined by a combination of two alleles out of A, B, O and allele O is dominated by A and B. Suppose that p, q and $r=1-p-q$ are the population frequencies of alleles A, B and O correspondingly. If alleles are passed randomly from the parents then the probabilities of blood types will be

Blood type	Allele combinations	Probabilities	Counts
O	$O O$	r^{2}	$\nu_{1}=121$
A	$A A, A O$	$p^{2}+2 p r$	$\nu_{2}=120$
B	$B B, B O$	$q^{2}+2 p r$	$\nu_{3}=79$
$A B$	$A B$	$2 p q$	$\nu_{4}=33$

We would like to test this theory based on the counts of each blood type in a random sample of 353 people. We have four groups and two free parameters p and q, so the chi-squared statistics T under the null hypotheses will have $\chi_{4-2-1}^{2}=\chi_{1}^{2}$ distribution with one degree of freedom. First, we have to find the MLE of parameters p and q. The log likelihood is

$$
\begin{aligned}
& \nu_{1} \log r^{2}+\nu_{2} \log \left(p^{2}+2 p r\right)+\nu_{3} \log \left(q^{2}+2 q r\right)+\nu_{4} \log (2 p q) \\
& =2 \nu_{1} \log (1-p-q)+\nu_{2} \log \left(2 p-p^{2}-2 p q\right)+\nu_{3} \log \left(2 q-q^{2}-2 p q\right)+\nu_{4} \log (2 p q)
\end{aligned}
$$

Unfortunately, if we set the derivatives with respect to p and q equal to zero, we get a system of two equations that is hard to solve explicitly. So instead we can minimize log likelihood numerically to get the MLE $\hat{p}=0.247$ and $\hat{q}=0.173$. Plugging these into formulas of blood type probabilities we get the estimated probabilities and estimated counts in each group

	O	A	B	AB
\hat{p}_{i}	0.3364	0.3475	0.2306	0.0855
$n \hat{p}_{i}$	118.7492	122.6777	81.4050	30.1681

We can now compute chi-squared statistic $T \approx 0.44$ and the p-value $\chi_{1}^{2}(T, \infty)=0.5071$. The data agrees very well with the above theory.

We could also use a similar test when the distributions $\mathbb{P}_{\theta}, \theta \in \Theta$ are not necessarily supported by a finite number of points B_{1}, \ldots, B_{r}, for example, continuous distributions. In this case if we want to test the hypothesis

$$
H_{0}: \mathbb{P}=\mathbb{P}_{\theta} \text { for some } \theta \in \Theta
$$

we can group the data into r intervals I_{1}, \ldots, I_{r} and test the hypothesis

$$
H_{0}: p_{j}=p_{j}(\theta)=\mathbb{P}_{\theta}\left(X \in I_{j}\right) \text { for all } j \leq r \text { for some } \theta
$$

For example, if we discretize normal distribution by grouping the data into intervals I_{1}, \ldots, I_{r} then the hypothesis will be

$$
H_{0}^{\prime}: p_{j}=N\left(\mu, \sigma^{2}\right)\left(I_{j}\right) \text { for all } j \leq r \text { for some }\left(\alpha, \sigma^{2}\right)
$$

There are two free parameters μ and σ^{2} that describe all these probabilities so in this case $s=2$. Matlab function 'chi2gof' tests for normality by grouping the data and computing statistic T in (11.0.1) - that is why it uses χ_{r-s-1}^{2} distribution with

$$
r-s-1=r-2-1=r-3
$$

degrees of freedom and, thus, 'df: 3 ' in the example above.
Example. Let us test if the data 'normtemp' from normal body temperature dataset fits normal distribution.

```
[H,P,STATS]= chi2gof(normtemp)
```

gives

```
H = 0, P = 0.0504
STATS = chi2stat: 9.4682
    df: 4
    edges: [1x8 double]
    0: [13 12 29 27 35 10 4]
    E: [9.9068 16.9874 27.6222 31.1769 24.4270 13.2839 6.5958]
```

and we accept null hypothesis at the default level of significance $\alpha=0.05$ since p-value $0.0504>\alpha=0.05$. We have $r=7$ groups and, therefore, $r-s-1=7-2-1=4$ degrees of freedom.

In the case when the distributions \mathbb{P}_{θ} are continuous or, more generally, have infinite number of values that must be grouped in order to use chi-squared test (for example, normal or Poisson distribution), it can be a difficult numerical problem to maximize the "grouped" likelihood function

$$
\mathbb{P}_{\theta}\left(I_{1}\right)^{\nu_{1}} \cdot \ldots \cdot \mathbb{P}_{\theta}\left(I_{r}\right)^{\nu_{r}} \rightarrow \max _{\theta} \rightarrow \theta^{*}
$$

It is tempting to use a usual non-grouped MLE $\hat{\theta}$ of θ instead of the above θ^{*} because it is often easier to compute, in fact, for many distributions we know explicit formulas for these MLEs. However, if we use $\hat{\theta}$ in the statistic

$$
\begin{equation*}
T=\sum_{j=1}^{r} \frac{\left(\nu_{j}-n p_{j}(\hat{\theta})\right)^{2}}{n p_{j}(\hat{\theta})} \tag{11.0.3}
\end{equation*}
$$

then it will no longer converge to χ_{r-s-1}^{2} distribution. A famous result in [1] proves that typically this T will converge to a distribution "in between" χ_{r-s-1}^{2} and χ_{r-1}^{2}. Intuitively this is easy to understand because θ^{*} specifically fits the grouped data ν_{1}, \ldots, ν_{r} so the expected counts

$$
n p_{1}\left(\theta^{*}\right), \ldots, n p_{r}\left(\theta^{*}\right)
$$

should be a better fit compared to the expected counts

$$
n p_{1}(\hat{\theta}), \ldots, n p_{r}(\hat{\theta}) .
$$

On the other hand, these last expected counts should be a better fit than simply using the true expected counts

$$
n p_{1}\left(\theta_{0}\right), \ldots, n p_{r}\left(\theta_{0}\right)
$$

since the MLE $\hat{\theta}$ fits the data better than the true distribution. So typically we would expect

$$
\sum_{j=1}^{r} \frac{\left(\nu_{j}-n p_{j}\left(\theta^{*}\right)\right)^{2}}{n p_{j}\left(\theta^{*}\right)} \leq \sum_{j=1}^{r} \frac{\left(\nu_{j}-n p_{j}(\hat{\theta})\right)^{2}}{n p_{j}(\hat{\theta})} \leq \sum_{j=1}^{r} \frac{\left(\nu_{j}-n p_{j}\left(\theta_{0}\right)\right)^{2}}{n p_{j}\left(\theta_{0}\right)}
$$

But the left hand side converges to χ_{r-s-1}^{2} and the right hand side converges to χ_{r-1}^{2}. Thus, if the decision rule is based on the statistic (11.0.3):

$$
\delta= \begin{cases}H_{1}: & T \leq c \\ H_{2}: & T>c\end{cases}
$$

then the threshold c can be determined conservatively from the tail of χ_{r-1}^{2} distribution since

$$
\mathbb{P}\left(\delta \neq H_{0} \mid H_{0}\right)=\mathbb{P}(T>c) \leq \chi_{r-1}^{2}(T>c)=\alpha
$$

References:

[1] Chernoff, Herman; Lehmann, E. L. (1954) The use of maximum likelihood estimates in χ^{2} tests for goodness of fit. Ann. Math. Statistics 25, pp. 579-586.

