Section 10

Chi-squared goodness-of-fit test.

Example. Let us start with a Matlab example. Let us generate a vector X of 100 i.i.d. uniform random variables on $[0,1]$:
$X=\operatorname{rand}(100,1)$.
Parameters $(100,1)$ here mean that we generate a 100×1 matrix or uniform random variables. Let us test if the vector X comes from distribution $U[0,1]$ using χ^{2} goodness-of-fit test:
[H, P, STATS]=chi2gof (X, 'cdf',@(z)unifcdf(z,0,1), 'edges', 0:0.2:1)
The output is

```
H = 0, P = 0.0953,
STATS = chi2stat: 7.9000
    df: 4
    edges: [0 0.2 0.4 0.6 0.8 1]
    0: [17 16 24 29 14]
    E: [20 20 20 20 20]
```

We accept null hypothesis $H_{0}: \mathbb{P}=U[0,1]$ at the default level of significance $\alpha=0.05$ since the p-value 0.0953 is greater than α. The meaning of other parameters will become clear when we explain how this test works. Parameter 'cdf' takes the handle @ to a fully specified c.d.f. For example, to test if the data comes from $N(3,5)$ we would use '@(z)normcdf(z,3,5)', or to test Poisson distribution $\Pi(4)$ we would use '@(z)poisscdf(z,4).'

It is important to note that when we use chi-squared test to test, for example, the null hypothesis $H_{0}: \mathbb{P}=N(1,2)$, the alternative hypothesis is $H_{0}: \mathbb{P} \neq N(1,2)$. This is different from the setting of t-tests where we would assume that the data comes from normal distribution and test $H_{0}: \mu=1$ vs. $H_{0}: \mu \neq 1$.

Pearson's theorem.

Chi-squared goodness-of-fit test is based on a probabilistic result that we will prove in this section.

Figure 10.1:
Let us consider r boxes B_{1}, \ldots, B_{r} and throw n balls X_{1}, \ldots, X_{n} into these boxes independently of each other with probabilities

$$
\mathbb{P}\left(X_{i} \in B_{1}\right)=p_{1}, \ldots, \mathbb{P}\left(X_{i} \in B_{r}\right)=p_{r},
$$

so that

$$
p_{1}+\ldots+p_{r}=1
$$

Let ν_{j} be a number of balls in the j th box:

$$
\nu_{j}=\#\left\{\text { balls } X_{1}, \ldots, X_{n} \text { in the box } B_{j}\right\}=\sum_{l=1}^{n} I\left(X_{l} \in B_{j}\right)
$$

On average, the number of balls in the j th box will be $n p_{j}$ since

$$
\mathbb{E} \nu_{j}=\sum_{l=1}^{n} \mathbb{E} I\left(X_{l} \in B_{j}\right)=\sum_{l=1}^{n} \mathbb{P}\left(X_{l} \in B_{j}\right)=n p_{j}
$$

We can expect that a random variable ν_{j} should be close to $n p_{j}$. For example, we can use a Central Limit Theorem to describe precisely how close ν_{j} is to $n p_{j}$. The next result tells us how we can describe the closeness of ν_{j} to $n p_{j}$ simultaneously for all boxes $j \leq r$. The main difficulty in this Thorem comes from the fact that random variables ν_{j} for $j \leq r$ are not independent because the total number of balls is fixed

$$
\nu_{1}+\ldots+\nu_{r}=n
$$

If we know the counts in $n-1$ boxes we automatically know the count in the last box.
Theorem.(Pearson) We have that the random variable

$$
\sum_{j=1}^{r} \frac{\left(\nu_{j}-n p_{j}\right)^{2}}{n p_{j}} \rightarrow^{d} \chi_{r-1}^{2}
$$

converges in distribution to χ_{r-1}^{2}-distribution with $(r-1)$ degrees of freedom.

Proof. Let us fix a box B_{j}. The random variables

$$
I\left(X_{1} \in B_{j}\right), \ldots, I\left(X_{n} \in B_{j}\right)
$$

that indicate whether each observation X_{i} is in the box B_{j} or not are i.i.d. with Bernoulli distribution $B\left(p_{j}\right)$ with probability of success

$$
\mathbb{E} I\left(X_{1} \in B_{j}\right)=\mathbb{P}\left(X_{1} \in B_{j}\right)=p_{j}
$$

and variance

$$
\operatorname{Var}\left(I\left(X_{1} \in B_{j}\right)\right)=p_{j}\left(1-p_{j}\right)
$$

Therefore, by Central Limit Theorem the random variable

$$
\begin{aligned}
\frac{\nu_{j}-n p_{j}}{\sqrt{n p_{j}\left(1-p_{j}\right)}} & =\frac{\sum_{l=1}^{n} I\left(X_{l} \in B_{j}\right)-n p_{j}}{\sqrt{n p_{j}\left(1-p_{j}\right)}} \\
& =\frac{\sum_{l=1}^{n} I\left(X_{l} \in B_{j}\right)-n \mathbb{E}}{\sqrt{n \mathrm{Var}}} \rightarrow^{d} N(0,1)
\end{aligned}
$$

converges in distribution to $N(0,1)$. Therefore, the random variable

$$
\frac{\nu_{j}-n p_{j}}{\sqrt{n p_{j}}} \rightarrow^{d} \sqrt{1-p_{j}} N(0,1)=N\left(0,1-p_{j}\right)
$$

converges to normal distribution with variance $1-p_{j}$. Let us be a little informal and simply say that

$$
\frac{\nu_{j}-n p_{j}}{\sqrt{n p_{j}}} \rightarrow Z_{j}
$$

where random variable $Z_{j} \sim N\left(0,1-p_{j}\right)$.
We know that each Z_{j} has distribution $N\left(0,1-p_{j}\right)$ but, unfortunately, this does not tell us what the distribution of the sum $\sum Z_{j}^{2}$ will be, because as we mentioned above r.v.s ν_{j} are not independent and their correlation structure will play an important role. To compute the covariance between Z_{i} and Z_{j} let us first compute the covariance between

$$
\frac{\nu_{i}-n p_{i}}{\sqrt{n p_{i}}} \text { and } \frac{\nu_{j}-n p_{j}}{\sqrt{n p_{j}}}
$$

which is equal to

$$
\begin{aligned}
& \mathbb{E} \frac{\nu_{i}-n p_{j}}{\sqrt{n p_{i}}} \frac{\nu_{j}-n p_{j}}{\sqrt{n p_{j}}}=\frac{1}{n \sqrt{p_{i} p_{j}}}\left(\mathbb{E} \nu_{i} \nu_{j}-\mathbb{E} \nu_{i} n p_{j}-\mathbb{E} \nu_{j} n p_{i}+n^{2} p_{i} p_{j}\right) \\
& =\frac{1}{n \sqrt{p_{i} p_{j}}}\left(\mathbb{E} \nu_{i} \nu_{j}-n p_{i} n p_{j}-n p_{j} n p_{i}+n^{2} p_{i} p_{j}\right)=\frac{1}{n \sqrt{p_{i} p_{j}}}\left(\mathbb{E} \nu_{i} \nu_{j}-n^{2} p_{i} p_{j}\right) .
\end{aligned}
$$

To compute $\mathbb{E} \nu_{i} \nu_{j}$ we will use the fact that one ball cannot be inside two different boxes simultaneously which means that

$$
\begin{equation*}
I\left(X_{l} \in B_{i}\right) I\left(X_{l} \in B_{j}\right)=0 \tag{10.0.1}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\mathbb{E} \nu_{i} \nu_{j} & =\mathbb{E}\left(\sum_{l=1}^{n} I\left(X_{l} \in B_{i}\right)\right)\left(\sum_{l^{\prime}=1}^{n} I\left(X_{l^{\prime}} \in B_{j}\right)\right)=\mathbb{E} \sum_{l, l^{\prime}} I\left(X_{l} \in B_{i}\right) I\left(X_{l^{\prime}} \in B_{j}\right) \\
& =\underbrace{\mathbb{E} \sum_{l=l^{\prime}} I\left(X_{l} \in B_{i}\right) I\left(X_{l^{\prime}} \in B_{j}\right)}_{\text {this equals to } 0 \text { by (10.0.1) }}+\mathbb{E} \sum_{l \neq l^{\prime}} I\left(X_{l} \in B_{i}\right) I\left(X_{l^{\prime}} \in B_{j}\right) \\
& =n(n-1) \mathbb{E} I\left(X_{l} \in B_{j}\right) \mathbb{E} I\left(X_{l^{\prime}} \in B_{j}\right)=n(n-1) p_{i} p_{j} .
\end{aligned}
$$

Therefore, the covariance above is equal to

$$
\frac{1}{n \sqrt{p_{i} p_{j}}}\left(n(n-1) p_{i} p_{j}-n^{2} p_{i} p_{j}\right)=-\sqrt{p_{i} p_{j}} .
$$

To summarize, we showed that the random variable

$$
\sum_{j=1}^{r} \frac{\left(\nu_{j}-n p_{j}\right)^{2}}{n p_{j}} \rightarrow \sum_{j=1}^{r} Z_{j}^{2}
$$

where normal random variables Z_{1}, \ldots, Z_{n} satisfy

$$
\mathbb{E} Z_{i}^{2}=1-p_{i} \text { and covariance } \mathbb{E} Z_{i} Z_{j}=-\sqrt{p_{i} p_{j}} .
$$

To prove the Theorem it remains to show that this covariance structure of the sequence of $\left(Z_{i}\right)$ implies that their sum of squares has χ_{r-1}^{2}-distribution. To show this we will find a different representation for $\sum Z_{i}^{2}$.

Let g_{1}, \ldots, g_{r} be i.i.d. standard normal random variables. Consider two vectors

$$
\boldsymbol{g}=\left(g_{1}, \ldots, g_{r}\right)^{T} \text { and } \boldsymbol{p}=\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{r}}\right)^{T}
$$

and consider a vector $\boldsymbol{g}-(\boldsymbol{g} \cdot \boldsymbol{p}) \boldsymbol{p}$, where $\boldsymbol{g} \cdot \boldsymbol{p}=g_{1} \sqrt{p_{1}}+\ldots+g_{r} \sqrt{p_{r}}$ is a scalar product of \boldsymbol{g} and \boldsymbol{p}. We will first prove that

$$
\begin{equation*}
\boldsymbol{g}-(\boldsymbol{g} \cdot \boldsymbol{p}) \boldsymbol{p} \text { has the same joint distribution as }\left(Z_{1}, \ldots, Z_{r}\right) \tag{10.0.2}
\end{equation*}
$$

To show this let us consider two coordinates of the vector $\boldsymbol{g}-(\boldsymbol{g} \cdot \boldsymbol{p}) \boldsymbol{p}$:

$$
i^{\text {th }}: g_{i}-\sum_{l=1}^{r} g_{l} \sqrt{p_{l}} \sqrt{p_{i}} \quad \text { and } j^{\text {th }}: g_{j}-\sum_{l=1}^{r} g_{l} \sqrt{p_{l}} \sqrt{p_{j}}
$$

and compute their covariance:

$$
\begin{aligned}
& \mathbb{E}\left(g_{i}-\sum_{l=1}^{r} g_{l} \sqrt{p_{l}} \sqrt{p_{i}}\right)\left(g_{j}-\sum_{l=1}^{r} g_{l} \sqrt{p_{l}} \sqrt{p_{j}}\right) \\
& =-\sqrt{p_{i}} \sqrt{p_{j}}-\sqrt{p_{j}} \sqrt{p_{i}}+\sum_{l=1}^{n} p_{l} \sqrt{p_{i}} \sqrt{p_{j}}=-2 \sqrt{p_{i} p_{j}}+\sqrt{p_{i} p_{j}}=-\sqrt{p_{i} p_{j}} .
\end{aligned}
$$

Similarly, it is easy to compute that

$$
\mathbb{E}\left(g_{i}-\sum_{l=1}^{r} g_{l} \sqrt{p_{l}} \sqrt{p_{i}}\right)^{2}=1-p_{i} .
$$

This proves (10.0.2), which provides us with another way to formulate the convergence, namely, we have

$$
\sum_{j=1}^{r}\left(\frac{\nu_{j}-n p_{j}}{\sqrt{n p_{j}}}\right)^{2} \rightarrow^{d}|\boldsymbol{g}-(\boldsymbol{g} \cdot \boldsymbol{p}) \boldsymbol{p}|^{2}
$$

But this vector has a simple geometric interpretation. Since vector \boldsymbol{p} is a unit vector:

$$
|\boldsymbol{p}|^{2}=\sum_{l=1}^{r}\left(\sqrt{p_{i}}\right)^{2}=\sum_{l=1}^{r} p_{i}=1
$$

vector $\boldsymbol{V}_{\mathbf{1}}=(\boldsymbol{p} \cdot \boldsymbol{g}) \boldsymbol{p}$ is the projection of vector \boldsymbol{g} on the line along \boldsymbol{p} and, therefore, vector $\boldsymbol{V}_{\mathbf{2}}=\boldsymbol{g}-(\boldsymbol{p} \cdot \boldsymbol{g}) \boldsymbol{p}$ will be the projection of \boldsymbol{g} onto the plane orthogonal to \boldsymbol{p}, as shown in figure 10.2.

Figure 10.2: New coordinate system.
Let us consider a new orthonormal coordinate system with the first basis vector (first axis) equal to \boldsymbol{p}. In this new coordinate system vector \boldsymbol{g} will have coordinates

$$
\boldsymbol{g}^{\prime}=\left(g_{1}^{\prime}, \ldots, g_{r}^{\prime}\right)=V \boldsymbol{g}
$$

obtained from \boldsymbol{g} by orthogonal transformation

$$
V=\left(\boldsymbol{p}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{r}\right)
$$

that maps canonical basis into this new basis. But we proved in Lecure 4 that in that case $g_{1}^{\prime}, \ldots, g_{r}^{\prime}$ will also be i.i.d. standard normal. From figure 10.2 it is obvious that vector $\boldsymbol{V}_{\mathbf{2}}=\boldsymbol{g}-(\boldsymbol{p} \cdot \boldsymbol{g}) \boldsymbol{p}$ in the new coordinate system has coordinates

$$
\left(0, g_{2}^{\prime}, \ldots, g_{r}^{\prime}\right)^{T}
$$

and, therefore,

$$
\left|\boldsymbol{V}_{\mathbf{2}}\right|^{2}=|\boldsymbol{g}-(\boldsymbol{p} \cdot \boldsymbol{g}) \boldsymbol{p}|^{2}=\left(g_{2}^{\prime}\right)^{2}+\ldots+\left(g_{r}^{\prime}\right)^{2}
$$

But this last sum, by definition, has χ_{r-1}^{2} distribution since $g_{2}^{\prime}, \cdots, g_{r}^{\prime}$ are i.i.d. standard normal. This finishes the proof of Theorem.

Chi-squared goodness-of-fit test for simple hypothesis.

Suppose that we observe an i.i.d. sample X_{1}, \ldots, X_{n} of random variables that take a finite number of values B_{1}, \ldots, B_{r} with unknown probabilities p_{1}, \ldots, p_{r}. Consider hypotheses

$$
\begin{array}{lc}
H_{0}: & p_{i}=p_{i}^{\circ} \text { for all } i=1, \ldots, r, \\
H_{1}: & \text { for some } i, p_{i} \neq p_{i}^{\circ} .
\end{array}
$$

If the null hypothesis H_{0} is true then by Pearson's theorem

$$
T=\sum_{i=1}^{r} \frac{\left(\nu_{i}-n p_{i}^{\circ}\right)^{2}}{n p_{i}^{\circ}} \rightarrow^{d} \chi_{r-1}^{2}
$$

where $\nu_{i}=\#\left\{X_{j}: X_{j}=B_{i}\right\}$ are the observed counts in each category. On the other hand, if H_{1} holds then for some index $i, p_{i} \neq p_{i}^{\circ}$ and the statistics T will behave differently. If p_{i} is the true probability $\mathbb{P}\left(X_{1}=B_{i}\right)$ then by CLT

$$
\frac{\nu_{i}-n p_{i}}{\sqrt{n p_{i}}} \rightarrow^{d} N\left(0,1-p_{i}\right) .
$$

If we rewrite

$$
\frac{\nu_{i}-n p_{i}^{\circ}}{\sqrt{n p_{i}^{\circ}}}=\frac{\nu_{i}-n p_{i}+n\left(p_{i}-p_{i}^{\circ}\right)}{\sqrt{n p_{i}^{\circ}}}=\sqrt{\frac{p_{i}}{p_{i}^{\circ}}} \frac{\nu_{i}-n p_{i}}{\sqrt{n p_{i}}}+\sqrt{n} \frac{p_{i}-p_{i}^{\circ}}{\sqrt{p_{i}^{\circ}}}
$$

then the first term converges to $N\left(0,\left(1-p_{i}\right) p_{i} / p_{i}^{\circ}\right)$ and the second term diverges to plus or minus ∞ because $p_{i} \neq p_{i}^{\circ}$. Therefore,

$$
\frac{\left(\nu_{i}-n p_{i}^{\circ}\right)^{2}}{n p_{i}^{\circ}} \rightarrow+\infty
$$

which, obviously, implies that $T \rightarrow+\infty$. Therefore, as sample size n increases the distribution of T under null hypothesis H_{0} will approach χ_{r-1}^{2}-distribution and under alternative hypothesis H_{1} it will shift to $+\infty$, as shown in figure 10.3.

Figure 10.3: Behavior of T under H_{0} and H_{1}.

Therefore, we define the decision rule

$$
\delta= \begin{cases}H_{1}: & T \leq c \\ H_{2}: & T>c\end{cases}
$$

We choose the threshold c from the condition that the error of type 1 is equal to the level of significance α :

$$
\alpha=\mathbb{P}_{1}\left(\delta \neq H_{1}\right)=\mathbb{P}_{1}(T>c) \approx \chi_{r-1}^{2}(c, \infty)
$$

since under the null hypothesis the distribution of T is approximated by χ_{r-1}^{2} distribution. Therefore, we take c such that $\alpha=\chi_{r-1}^{2}(c, \infty)$. This test δ is called the chi-squared goodness-of-fit test.

Example. (Montana outlook poll.) In a 1992 poll 189 Montana residents were asked (among other things) whether their personal financial status was worse, the same or better than a year ago.

Worse	Same	Better	Total
58	64	67	189

We want to test the hypothesis H_{0} that the underlying distribution is uniform, i.e. $p_{1}=p_{2}=$ $p_{3}=1 / 3$. Let us take level of significance $\alpha=0.05$. Then the threshold c in the chi-squared
test

$$
\delta= \begin{cases}H_{0}: & T \leq c \\ H_{1}: & T>c\end{cases}
$$

is found from the condition that $\chi_{3-1=2}^{2}(c, \infty)=0.05$ which gives $c=5.9$. We compute chi-squared statistic

$$
T=\frac{(58-189 / 3)^{2}}{189 / 3}+\frac{(64-189 / 3)^{2}}{189 / 3}+\frac{(67-189 / 3)^{2}}{189 / 3}=0.666<5.9
$$

which means that we accept H_{0} at the level of significance 0.05 .

Goodness-of-fit for continuous distribution.

Let X_{1}, \ldots, X_{n} be an i.i.d. sample from unknown distribution \mathbb{P} and consider the following hypotheses:

$$
\begin{cases}H_{0}: & \mathbb{P}=\mathbb{P}_{0} \\ H_{1}: & \mathbb{P} \neq \mathbb{P}_{0}\end{cases}
$$

for some particular, possibly continuous distribution \mathbb{P}_{0}. To apply the chi-squared test above we will group the values of X s into a finite number of subsets. To do this, we will split a set of all possible outcomes \mathcal{X} into a finite number of intervals I_{1}, \ldots, I_{r} as shown in figure 10.4.

Figure 10.4: Discretizing continuous distribution.

The null hypothesis H_{0}, of course, implies that for all intervals

$$
\mathbb{P}\left(X \in I_{j}\right)=\mathbb{P}_{0}\left(X \in I_{j}\right)=p_{j}^{0}
$$

Therefore, we can do chi-squared test for

$$
\begin{array}{ll}
H_{0}^{\prime}: & \mathbb{P}\left(X \in I_{j}\right)=p_{j}^{0} \text { for all } j \leq r \\
H_{1}^{\prime}: & \text { otherwise. }
\end{array}
$$

Asking whether H_{0}^{\prime} holds is, of course, a weaker question that asking if H_{0} holds, because H_{0} implies H_{0}^{\prime} but not the other way around. There are many distributions different from \mathbb{P} that have the same probabilities of the intervals I_{1}, \ldots, I_{r} as \mathbb{P}. On the other hand, if we group into more and more intervals, our discrete approximation of \mathbb{P} will get closer and closer to \mathbb{P}, so in some sense H_{0}^{\prime} will get 'closer' to H_{0}. However, we can not split into too many intervals either, because the χ_{r-1}^{2}-distribution approximation for statistic T in Pearson's theorem is asymptotic. The rule of thumb is to group the data in such a way that the expected count in each interval

$$
n p_{i}^{0}=n \mathbb{P}_{0}\left(X \in I_{i}\right) \geq 5
$$

is at least 5. (Matlab, for example, will give a warning if this expected number will be less than five in any interval.) One approach could be to split into intervals of equal probabilities $p_{i}^{0}=1 / r$ and choose their number r so that

$$
n p_{i}^{0}=\frac{n}{r} \geq 5 .
$$

Example. Let us go back to the example from Lecture 2. Let us generate 100 observations from Beta distribution $B(5,2)$.

X=betarnd (5, 2, 100, 1) ;
Let us fit normal distribution $N\left(\mu, \sigma^{2}\right)$ to this data. The MLE $\hat{\mu}$ and $\hat{\sigma}$ are
$\operatorname{mean}(X)=0.7421, \operatorname{std}(X, 1)=0.1392$.
Note that 'std(X)' in Matlab will produce the square root of unbiased estimator $(n / n-1) \hat{\sigma}^{2}$. Let us test the hypothesis that the sample has this fitted normal distribution.

```
[H,P,STATS]= chi2gof(X,'cdf',@(z)normcdf(z,0.7421,0.1392))
```

outputs

```
H = 1, P = 0.0041,
STATS = chi2stat: 20.7589
    df: 7
    edges: [1x9 double]
    0: [14 4 11 14 14 16 21 6]
    E: [1x8 double]
```

Our hypothesis was rejected with p-value of 0.0041 . Matlab split the real line into 8 intervals of equal probabilities. Notice 'df: 7 ' - the degrees of freedom $r-1=8-1=7$.

