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Section 9 

Most powerful tests for two simple 
hypotheses. 

Now that we learned how to construct the decision rule that minimizes the Bayes error we 
will turn to our next goal - constructing the decision rule with controlled error of type 1 that 
minimizes error of type 2. Given � [0, 1] we consider the class of decision rules ⇒ 

K� = {ξ : P1(ξ =∅ H1) � �} 

and we will try to find ξ K� that makes the type 2 error �2 = P2(ξ = H2) as small as ⇒ ∅
possible. 

Theorem. Assume that there exists a constant c, such that 
⎨f1(X) ⎩ 

P1 < c = �. (9.0.1)
f2(X) 

Then the decision rule 
H1 : 

f1(X) 

ξ = f2(X) � c 
(9.0.2)

H2 : 
f1(X) < c 
f2(X) 

is the most powerful in class K�.


Proof. Take �(1) and �(2) such that


�(2)
�(1) + �(2) = 1, = c,

�(1) 

i.e. 
1 c 

�(1) = and �(2) = . 
1 + c 1 + c 

Then the decision rule ξ in (9.0.2) is the Bayes decision rule corresponding to weights �(1) 
and �(2) which can be seen by comparing it with (8.0.1), only here we break the tie in favor 
of H1. Therefore, this decision rule ξ minimizes the Bayes error which means that for any 
other decision rule ξ�, 

�(1)P1(ξ ∅= H1) + �(2)P2(ξ ∅= H2) � �(1)P1(ξ
� ∅= H1) + �(2)P2(ξ

� ∅= H2). (9.0.3) 
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By assumption (9.0.1) we have 

⎨f1(X) ⎩ 
P1(ξ = H1) = P1 < c = �, ∅

f2(X) 

which means that ξ comes from the class K�. If ξ� K� then⇒ 

P1(ξ
� =∅ H1) � � 

and equation (9.0.3) gives us that 

�(1)� + �(2)P2(ξ =∅ H2) � �(1)� + �(2)P2(ξ
� =∅ H2) 

and, therefore, 
P2(ξ =∅ H2) � P2(ξ

� =∅ H2). 

This exactly means that ξ is more powerful than any other decision rule in class K�. 

Example. Suppose we have a sample X = (X1, . . . , Xn) and two simple hypotheses 
H1 : P = N(0, 1) and H2 : P = N(1, 1). Let us find most powerful ξ with the error of type 1 

�1 � � = 0.05. 

According to the above Theorem if we can find c such that 

⎨f1(X) ⎩ 
P1 < c = � = 0.05 

f2(X) 

then we know how to find ξ. Simplifying this equation gives 
⎨� n ⎩ 

P1 Xi > 
2 
− log c = � = 0.05 

or
 ⎨ 1 � 1 n ⎩ 
P1 ∞

n
Xi > c� = ∞

n 
(
2 
− log c) = � = 0.05. 

But under the hypothesis H1 the sample comes from standard normal distribution P1 = 
N(0, 1) which implies that the random variable 

1 � 
Y = Xi∞

n 

is standard normal. We can use the table of normal distribution to find 

P(Y > c�) = � = 0.05 ≤ c� = 1.64. 

Therefore, the most powerful test with level of significance � = 0.05 is: 
� 

H1 : 1 � 
Xi � 1.64�

nξ = 
H2 : �1

n 

� 
Xi > 1.64. 
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� 

What will the error of type 2 be for this test? 
⎨ 1 � ⎩ 

�2 = P2(ξ =∅ H2) = P2 ∞
n

Xi � 1.64 

n 

= P2 

⎨ 
∞1 

n 

� 
(Xi − 1) � 1.64 −∞

n 
⎩ 
. 

i=1 

The reason we subtracted 1 from each Xi is because under the second hypothesis X’s have 
distribution N(1, 1) and random variable 

n
1 � 

Y = ∞
n 

(Xi − 1) 
i=1 

will be standard normal. Therefore, the error of type 2 for this test will be equal to 

P(Y < 1.64 −
∞

n) = N(0, 1)(−∼, 1.64 −
∞

n). 

For example, when the sample size n = 10, �2 = P(Y < 1.64 −
∞

10) = 0.087. 

Randomized most powerful test. 
Next we will show how to get rid of the assumption (9.0.1) which, unfortunately, does 

not always hold as will become clear from examples below. 
If we examine carefully the proof of Theorem we notice that condition (9.0.1) was nec

essary to ensure that the likelihood ratio test has error of type 1 exactly! equal to �. Also, 
the test was designed to be a Bayes test and in Bayes tests we have a freedom of breaking 
a tie in an arbitrary way. In the following version of previous theorem we will show that the 
most powerful test in class K� can always be constructed by breaking a tie randomly in a 
way that makes error of type 1 exactly equal to �. 

Theorem. Given any � [0, 1] we can always find c [0, ∼) and p [0, 1] such that ⇒ ⇒ ⇒ 

⎨f1(X) ⎩ ⎨f1(X) ⎩ 
P1 < c + (1 − p)P1 = c = �. (9.0.4)

f2(X) f2(X) 

In this case, the most powerful test ξ K� is given by ⇒ 
� 

f1(X)H1 : > c ⎧ f2(X) 
f1(X)ξ = H2 : f2(X) < c 

⎧
f1(X)� 

pH1 + (1 − p)H2 : = c,
f2(X) 

where in the case of equality we break the tie randomly by picking H1 with probability p and 
H2 with probability 1−p. This test ξ is called a randomized most powerful test for two simple 
hypotheses at the level of significance �. 

Proof. Let us first assume that we can find c and p such that (9.0.4) holds. Then the 
error of type 1 for the randomized test ξ is 

⎨f1(X) ⎩ ⎨f1(X) ⎩ 
�1 = P1(ξ =∅ H1) = P1 

f2(X) 
< c + (1 − p)P1 

f2(X)
= c = �, (9.0.5) 
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since ξ does not pick H1 exactly when the likelihood ratio is less than c or when it is equal 
to c in which case H1 is not picked with probability 1 − p. This means that the randomized 
test ξ K�. The rest of the proof repeats the proof of the previous theorem. We only need ⇒
to point out that our randomized test will still be a Bayes test since in the case of equality 

f1(X) 
= c 

f2(X) 

the Bayes test allows us to break the tie arbitrarily and we choose to break it randomly in 
a way that ensures that the error of type one will be equal to �, as in (9.0.5). 

The only question left is why we can always choose c and p such that (9.0.4) is satisfied. 
If we look at the function 

⎨f1(X) ⎩ 
F (t) = P < t 

f2(X) 

as a function of t, it will increase from 0 to 1 as t increases from 0 to ∼. Let us keep in mind 
that, in general, F (t) might have jumps. We can have two possibilities: either (a) at some 
point t = c the function F (c) will be equal to �, i.e. 

⎨f1(X) ⎩ 
F (c) = P < c = � 

f2(X) 

or (b) at some point t = c it will jump over �, i.e. 

⎨f1(X) ⎩ 
F (c) = P < c < � 

f2(X) 

but 
⎨f1(X) ⎩ ⎨f1(X) ⎩ 

P 
f2(X) 

� c = F (c) + P 
f2(X)

= c � �. 

In both cases we find p by solving (9.0.4) with this value of c. In the case (a) we get p = 1 
and for (b) we get 

� ⎨f1(X) ⎩ 
1 − p = (� − F (c)) P 

f2(X)
= c . 

Example. Suppose that we have one observation X � B(p) from Bernoulli distribution 
with probability of success p (0, 1). Consider two simple hypotheses ⇒ 

H1 : p = 0.2, i.e. f1(x) = 0.2x0.81−x ,


H2 : p = 0.4, i.e. f2(x) = 0.4x0.61−x .


Let us take the level of significance � = 0.05 and find the most powerful ξ K0.05. In figure ⇒
9.1 we show the graph of the function 

⎨f1(X) ⎩ 
F (c) = P1 < c . 

f2(X) 
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Figure 9.1: Graph of F (c). 

Let us explain how this graph is obtained. First of all, the likelihood ratio can take only 
two values: 

f1(X) 
� 

1/2, if X = 1 
= 

f2(X) 4/3, if X = 0. 

If c � 1/2 then the set 
⎪f1(X) � 

f2(X) 
< c = ≥ is empty and F (c) = P1(≥) = 0. 

If 1/2 < c � 4/3 then the set 
⎪f1(X) � 

f2(X) 
< c = {X = 1} and F (c) = P1(X = 1) = 0.2. 

Finally, if 4/3 < c then the set 
⎪f1(X) � 

f2(X) 
< c = {X = 0 or 1} and F (c) = P1(X = 0 or 1) = 1. 

The function F (c) jumps over the level � = 0.05 at the point c = 1/2. To determine p we 
have to make sure that the error of type one is equal to 0.05, i.e. 

⎨f1(X) ⎩ ⎨f1(X) ⎩ 
P1 

f2(X) 
< c + (1 − p)P1 

f2(X)
= c = 0 + (1 − p)0.2 = 0.05 

which gives that p = 3/4. Therefore, the most powerful test of size � = 0.05 is 
� 

f1(X) 1H1 : > or X = 0 ⎧ f2(X) 2 
f1(X) 1 or never ξ = H2 : f2(X) < 

2 ⎧� 3 H1 + 1 H2 : 
f1(X) = 1 or X = 1.

4 4 f2(X) 2 

In the example above one could also consider two or more observations. Another example 
would be to consider, let’s say, two observations from Poisson distribution �(�) and test two 
simple hypotheses H1 : � = 0.1 vs. H2 : � = 0.3. 
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