
Lecture 6

Let us compute Fisher information for some particular distributions.
Example 1. The family of Bernoulli distributions B(p) has p.f.

f(x|p) = px(1 − p)1−x

and taking the logarithm

log f(x|p) = x log p + (1 − x) log(1 − p).

The second derivative with respect to parameter p is

∂

∂p
log f(x|p) =

x

p
− 1 − x

1 − p
,

∂2

∂p2
log f(x|p) = − x

p2
− 1 − x

(1 − p)2

then we showed that Fisher information can be computed as:

I(p) = − � ∂2

∂p2
log f(X|p) =

�
X

p2
+

1 − �
X

(1 − p)2
=

p

p2
+

1 − p

(1 − p)2
=

1

p(1 − p)
.

The MLE of p is p̂ = X̄ and the asymptotic normality result from last lecture becomes

√
n(p̂ − p0) → N(0, p0(1 − p0))

which, of course, also follows directly from the CLT.
Example. The family of exponential distributions E(α) has p.d.f.

f(x|α) =

{
αe−αx, x ≥ 0
0, x < 0

and, therefore,

log f(x|α) = log α − αx ⇒ ∂2

∂α2
log f(x|α) = − 1

α2
.
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This does not depend on X and we get

I(α) = − � ∂2

∂α2
log f(X|α) =

1

α2
.

Therefore, the MLE α̂ = 1/X̄ is asymptotically normal and

√
n(α̂ − α0) → N(0, α2

0).

6.1 Rao-Crámer inequality.

Let us start by recalling the following simple result from probability (or calculus).
Lemma. (Cauchy inequality) For any two random variables X and Y we have:

�
XY ≤ (

�
X2)1/2(

�
Y 2)1/2.

The inequality becomes equality if and only if X = tY for some t ≥ 0 with probability
one.

Proof. Let us consider the following function

ϕ(t) =
�

(X − tY )2 =
�

X2 − 2t
�

XY + t2
�

Y 2 ≥ 0.

Since this is a quadractic function of t, the fact that it is nonnegative means that
it has not more than one solution which is possible only if the discriminant is non
positive:

D = 4(
�

XY )2 − 4
�

Y 2 �
X2 ≤ 0

and this implies that
�

XY ≤ (
�

X2)1/2(
�

Y 2)1/2.

Also ϕ(t) = 0 for some t if and only if D = 0. On the other hand, ϕ(t) = 0 means

�
(X − tY )2 = 0 ⇒ X = tY

with probability one.

Let us consider statistic
S = S(X1, . . . , Xn)

which is a function of the sample X1, . . . , Xn. Let us define a function

m(θ) =
�

θS(X1, . . . , Xn),
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where
�

θ is the expectation with respect to distribution � θ. In other words, m(θ)
denotes the mean of S when the sample has distribution � θ. The following is the
main result of this lecture.

Theorem. (The Rao-Crámer inequality). We have,

Varθ(S) =
�

θ(S − m(θ))2 ≥ (m′(θ))2

nI(θ)
.

This inequality becomes equality if and only if

S = t(θ)
n∑

i=1

l′(X|θ) + m(θ)

for some function t(θ) and where l(X|θ) = log f(X|θ).
Proof: Let us introduce the notation

l(x|θ) = log f(x|θ)

and consider a function

ln = ln(X1, . . . , Xn, θ) =

n∑

i=1

l(Xi|θ).

Let us apply Cauchy inequality in the above Lemma to the random variables

S − m(θ) and l′n =
∂ln
∂θ

.

We have:
�

θ(S − m(θ))l′n ≤ (
�

θ(S − m(θ))2)1/2(
�

θ(l
′
n)2)1/2.

Let us first compute
�

θ(l
′
n)2. If we square out (l′n)2 we get

�
θ(l

′
n)2 =

�
θ(

n∑

i=1

l′(Xi|θ))2 =
�

θ

n∑

i=1

n∑

j=1

l′(Xi|θ)l′(Xj|θ)

= n
�

θ(l
′(X1|θ))2 + n(n − 1)

�
θl(X1|θ)

�
θl(X2|θ)

where we simply grouped n terms for i = j and remaining n(n − 1) terms for i 6= j.
By definition of Fisher information

I(θ) =
�

θ(l
′(X1|θ))2.
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Also,

�
θl

′(X1|θ) =
�

θ
∂

∂θ
log f(X1|θ) =

�
θ
f ′(X1|θ)
f(X1|θ)

=

∫
f ′(x|θ)
f(x|θ) f(x|θ)dx

=

∫

f ′(x|θ)dx =
∂

∂θ

∫

f(x|θ)dx =
∂

∂θ
1 = 0.

We used here that f(x|θ) is a p.d.f. and it integrates to one. Combining these two
facts, we get

�
θ(l

′
n)2 = nI(θ).


