
Lecture 4

Let us go back to the example of exponential distribution E(α) from the last lecture
and recall that we obtained two estimates of unknown parameter α0 using the first
and second moment in the method of moments. We had:

1. Estimate of α0 using first moment:

g(X) = X, m(α) =
�

αg(X) =
1

α
, α̂1 = m−1(ḡ) =

1

X̄
.

2. Estimate of α using second moment:

g(X) = X2, m(α) =
�

αg(X2) =
2

α2
, α̂2 = m−1(ḡ) =

√

2

X̄2
.

How to decide which method is better? The asymptotic normality result states:

√
n(m−1(ḡ) − θ0) → N

(

0,
Varθ0(g(X))

(m′(θ0))2

)

.

It makes sense to compare two estimates by comparing their asymptotic variance.
Let us compute it in both cases:

1. In the first case:

Varα0(g(X))

(m′(α0))2
=

Varα0(X)

(− 1
α2

0
)2

=

1
α2

0

(− 1
α2

0
)2

= α2
0.

In the second case we will need to compute the fourth moment of the exponential
distribution. This can be easily done by integration by parts but we will show a
different way to do this.

The moment generating function of the distribution E(α) is:

ϕ(t) =
�

αetX =

∫ ∞

0

etxαe−αxdx =
α

α − t
=

∞∑

k=0

tk

αk
,
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where in the last step we wrote the usual Taylor series. On the other hand, writing
the Taylor series for etX we can write,

ϕ(t) =
�

αetX =
�

α

∞∑

k=0

(tX)k

k!
=

∞∑

k=0

tk

k!

�
αXk.

Comparing the two series above we get that the kth moment of exponential distribu-
tion is

�
αXk =

k!

αk
.

2. In the second case:

Varα0(g(X))

(m′(α0))2
=

Varα0(X
2)

(− 4
α3

0
)2

=

�
α0X

4 − (
�

α0X
2)2

(− 4
α3

0
)2

=

4!
α4

0
− ( 2

α2
0
)2

(− 4
α3

0
)2

=
5

4
α2

0

Since the asymptotic variance in the first case is less than the asymptotic variance
in the second case, the first estimator seems to be better.

4.1 Maximum likelihood estimators.

(Textbook, Section 6.5)
As always we consider a parametric family of distributions { � θ, θ ∈ Θ}. Let

f(X|θ) be either a probability function or a probability density function of the dis-
tribution � θ. Suppose we are given a sample X1, . . . , Xn with unknown distribution

� θ, i.e. θ is unknown. Let us consider a likelihood function

ϕ(θ) = f(X1|θ) × . . . × f(Xn|θ)

seen as a function of the parameter θ only. It has a clear interpretation. For example,
if our distributions are discrete then the probability function

f(x|θ) = � θ(X = x)

is a probability to observe a point x and the likelihood function

ϕ(θ) = f(X1|θ) × . . . × f(Xn|θ) = � θ(X1) × . . . × � θ(Xn) = � θ(X1, · · · , Xn)

is the probability to observe the sample X1, . . . , Xn.
In the continuous case the likelihood function ϕ(θ) is the probability density func-

tion of the vector (X1, · · · , Xn).



LECTURE 4. 15

Definition: (Maximum Likelihood Estimator.) Let θ̂ be the parameter that
maximizes ϕ(θ), i.e.

ϕ(θ̂) = max
θ

ϕ(θ).

Then θ̂ is called the maximum likelihood estimator (MLE).
To make our discussion as simple as possible, let us assume that the likelihood

function behaves like shown on the figure 4.1, i.e. the maximum is achieved at the
unique point θ̂.

Distribution RangeΘ <− θ

Best Estimator Here (at max. of fn.)

Max. Pt.
X1, ..., Xn

ϕ(θ)

θ̂

Figure 4.1: Maximum Likelihood Estimator (MLE)

When finding the MLE it sometimes easier to maximize the log-likelihood function
since

ϕ(θ) → maximize ⇔ log ϕ(θ) → maximize

maximizing ϕ is equivalent to maximizing log ϕ. Log-likelihood function can be writ-
ten as

log ϕ(θ) =

n∑

i=1

log f(Xi|θ).

Let us give several examples of MLE.
Example 1. Bernoulli distribution B(p).

X = {0, 1}, � (X = 1) = p, � (X = 0) = 1 − p, p ∈ [0, 1].

Probability function in this case is given by

f(x|p) =

{
p, x = 1,
1 − p, x = 0.

Likelihood function

ϕ(p) = f(X1|p)f(X2|p) . . . f(Xn|p)

= p# of 1′s(1 − p)# of 0′s = pX1+···+Xn(1 − p)n−(X1+···+Xn)
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and the log-likelihood function

log ϕ(p) = (X1 + · · · + Xn) log p + (n − (X1 + · · · + Xn)) log(1 − p).

To maximize this over p let us find the critical point d log ϕ(p)
dp

= 0,

(X1 + · · · + Xn)
1

p
− (n − (X1 + · · ·+ Xn))

1

1 − p
= 0.

Solving this for p gives,

p =
X1 + · · · + Xn

n
= X̄

and therefore p̂ = X̄ is the MLE.
Example 2. Normal distribution N(α, σ2) has p.d.f.

f(X|(α, σ2)) =
1√
2πσ

e−
(X−α)2

2σ2 .

likelihood function

ϕ(α, σ2) =
n∏

i=1

1√
2πσ

e−
(Xi−α)2

2σ2 .

and log-likelihood function

log ϕ(α, σ2) =

n∑

i=1

(

log
1√
2π

− log σ − (X − α)2

2σ2

)

= n log
1√
2π

− n log σ − 1

2σ2

n∑

i=1

(Xi − α)2.

We want to maximize the log-likelihood with respect to α and σ2. First, obviously,
for any σ we need to minimize

∑
(Xi − α)2 over α. The critical point condition is

d

dα

∑

(Xi − α)2 = −2
∑

(Xi − α) = 0.

Solving this for α gives that α̂ = X̄. Next, we need to maximize

n log
1√
2π

− n log σ − 1

2σ2

n∑

i=1

(Xi − X̄)2

over σ. The critical point condition reads,

−n

σ
+

1

σ3

∑

(Xi − X̄)2 = 0

and solving this for σ we get

σ̂2 =
1

n

n∑

i=1

(Xi − X̄)2

is the MLE of σ2.


