
Lecture 32

32.1 Classification problem.

Suppose that we have the data (X1, Y1), . . . , (Xn, Yn) that consist of pairs (Xi, Yi)
such that Xi belongs to some set X and Yi belongs to a set Y = {+1,−1}. We will
think of Yi as a label of Xi so that all points in the set X are divided into two classes
corresponding to labels ±1. For example, Xis can be images or representations of
images and Yis classify whether the image contains a human face or not. Given this
data we would like to find a classifier

f : X → Y

which given a point X ∈ X would predict its label Y. This type of problem is called
classification problem. In general, there may be more than two classes of points which
means that the set of labels may consist of more than two points but, for simplicity,
we will consider the simplest case when we have only two labels ±1.

We will take a look at one approach to this problem called boosting and, in
particular, prove one interesting property of the algorithm called AdaBoost.

Let us assume that we have a family of classifiers

H = {h : X → Y}.

Suppose that we can find many classifiers in H that can predict labels Yi better than
”tossing a coin” which means that they predict the correct label at least half of the
time. We will call H a family of weak classifiers because we do not require much of
them, for example, all these classifiers can make mistakes on, let’s say, 30% or even
45% of the sample.

The idea of boosting consists in trying to combine these weak classifiers so that
the combined classifier predicts the label correctly most of the time. Let us consider
one particular algorithm called Adaboost.
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Given weights w(1), . . . , w(n) that add up to one we define the weighted classifi-
cation error of the classifier h by

w(1)I(h(X1) 6= Y1) + . . . + w(n)I(h(Xn) 6= Yn).

AdaBoost algorithm. We start by assigning equal weights to the data points:

w1(1) = . . . = w1(n) =
1

n
.

Then for t = 1, . . . , T we repeat the following cycle:

1. Find ht ∈ H such that weighted error

εt = wt(1)I(ht(X1) 6= Y1) + . . . + wt(n)I(ht(Xn) 6= Yn)

is as small as possible.

2. Let αt = 1
2
log 1−εt

εt
and update the weights:

wt+1(i) = wt(i)
e−αtYiht(Xi)

Zt
,

where

Zt =
n∑

i=1

wte
−αtYiht(Xi)

is the normalizing factor to ensure that updated weights add up to one.

After we repeat this cycle T times we output the function

f(X) = α1h1(X) + . . . + αT hT (X)

and use sign(f(X)) as the prediction of label Y .
First of all, we can assume that the weighted error εt at each step t is less than 0.5

since, otherwise, if we make a mistake more than half of the time we should simply
predict the opposite label. For εt ≤ 0.5 we have,

αt =
1

2
log

1 − εt

εt
≥ 0.

Also, we have

Yiht(Xi) =

{
+1 if ht(Xi) = Yi

−1 if ht(Xi) 6= Yi.
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Therefore, if ht makes a mistake on the example (Xi, Yi) which means that ht(Xi) 6= Yi

or, equivalently, Yiht(Xi) = −1 then

wt+1(i) =
e−αtYiht(Xi)

Zt
wt(i) =

eαt

Zt
wt(i).

On the other hand, if ht predicts the label Yi correctly then Yiht(Xi) = 1 and

wt+1(i) =
e−αtYiht(Xi)

Zt
wt(i) =

e−αt

Zt
wt(i).

Since αt ≥ 0 this means that we increase the relative weight of the ith example if we
made a mistake on this example and decrease the relative weight if we predicted the
label Yi correctly. Therefore, when we try to minimize the weighted error at the next
step t + 1 we will pay more attention to the examples misclassified at the previous
step.

Theorem: The proportion of mistakes made on the data by the output classifier
sign(f(X)) is bounded by

1

n

n∑

i=1

I(sign(f(Xi))) 6= Yi) ≤
T∏

t=1

√

4εt(1 − εt).

Remark: If the weighted errors εt will be strictly less than 0.5 at each step meaning
that we predict the labels better than tossing a coin then the error of the combined
classifer will decrease exponentially fast with the number of rounds T . For example,
if εt ≤ 0.4 then 4εt(1 − εt) ≤ 4(0.4)(0.6) = 0.96 and the error will decrease as fast as
0.96T .

Proof. Using that I(x ≤ 0) ≤ e−x as shown in figure 32.1 we can bound the
indicator of making an error by

I(sign(f(Xi)) 6= Yi) = I(Yif(Xi) ≤ 0) ≤ e−Yif(Xi) = e−Yi

PT
t=1 αtht(Xi). (32.1)

Next, using the step 2 of AdaBoost algorithm which describes how the weights
are updated we can express the weights at each step in terms of the weights at the
previous step and we can write the following equation:

wT+1(i) =
wT (i)e−αT YihT (Xi)

ZT

=
e−αT YihT (Xi)

ZT

wT−1(i)e
−αT−1YihT−1(Xi)

ZT−1

= repeat this recursively over t

=
e−αT YihT (Xi)

ZT

e−αT−1YihT−1(Xi)

ZT−1

. . .
e−α1Yih1(Xi)

Z1

w1(i) =
e−Yif(Xi)

∏T
t=1 Zt

1

n
.
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e−xI(X)

Figure 32.1: Example.

This implies that

1

n
e−Yif(Xi) = wT+1(i)

T∏

t=1

Zt.

Combining this with (32.1) we can write

1

n

n∑

i=1

I(sign(f(Xi) 6= Yi)) ≤
n∑

i=1

1

n
e−Yif(Xi) =

T∏

t=1

Zt

n∑

i=1

wT+1(i) =

T∏

t=1

Zt. (32.2)

Next we will compute

Zt =

n∑

i=1

wt(i)e
−αtYiht(Xi).

As we have already mentioned above, Yiht(Xi) is equal to −1 or +1 depending on
whether ht makes a mistake or predicts the label Yi correctly. Therefore, we can
write,

Zt =
n∑

i=1

wt(i)e
−αtYiht(Xi) =

n∑

i=1

wt(i)I(Yi = ht(Xi))e
−αt +

n∑

i=1

wt(i)I(Yi 6= ht(Xi))e
αt

= e−αt(1 −
n∑

i=1

wt(i)I(Yi 6= ht(Xi))

︸ ︷︷ ︸

εt

) + eαt

n∑

i=1

wt(i)I(Yi = ht(Xi))

︸ ︷︷ ︸

εt

= e−αt(1 − εt) + eαtεt.

Up to this point all computations did not depend on the choice of αt but since we
bounded the error by

∏T
t=1 Zt we would like to make each Zt as small as possible and,

therefore, we choose αt that minimizes Zt. Simple calculus shows that we should take
αt = 1

2
log 1−εt

εt
which is precisely the choice made in AdaBoost algorithm. For this
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choice of αt we get

Zt = (1 − εt)

√
εt

1 − εt
+ εt

√
1 − εt

εt
=

√

4εt(1 − εt)

and plugging this into (32.2) finishes the proof of the bound.


