Lecture 32

32.1 Classification problem.

Suppose that we have the data $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ that consist of pairs $\left(X_{i}, Y_{i}\right)$ such that X_{i} belongs to some set \mathcal{X} and Y_{i} belongs to a set $\mathcal{Y}=\{+1,-1\}$. We will think of Y_{i} as a label of X_{i} so that all points in the set \mathcal{X} are divided into two classes corresponding to labels ± 1. For example, $X_{i} \mathrm{~s}$ can be images or representations of images and Y_{i} s classify whether the image contains a human face or not. Given this data we would like to find a classifier

$$
f: \mathcal{X} \rightarrow \mathcal{Y}
$$

which given a point $X \in \mathcal{X}$ would predict its label Y. This type of problem is called classification problem. In general, there may be more than two classes of points which means that the set of labels may consist of more than two points but, for simplicity, we will consider the simplest case when we have only two labels ± 1.

We will take a look at one approach to this problem called boosting and, in particular, prove one interesting property of the algorithm called AdaBoost.

Let us assume that we have a family of classifiers

$$
\mathcal{H}=\{h: \mathcal{X} \rightarrow \mathcal{Y}\} .
$$

Suppose that we can find many classifiers in \mathcal{H} that can predict labels Y_{i} better than "tossing a coin" which means that they predict the correct label at least half of the time. We will call \mathcal{H} a family of weak classifiers because we do not require much of them, for example, all these classifiers can make mistakes on, let's say, 30% or even 45% of the sample.

The idea of boosting consists in trying to combine these weak classifiers so that the combined classifier predicts the label correctly most of the time. Let us consider one particular algorithm called Adaboost.

Given weights $w(1), \ldots, w(n)$ that add up to one we define the weighted classification error of the classifier h by

$$
w(1) I\left(h\left(X_{1}\right) \neq Y_{1}\right)+\ldots+w(n) I\left(h\left(X_{n}\right) \neq Y_{n}\right) .
$$

AdaBoost algorithm. We start by assigning equal weights to the data points:

$$
w_{1}(1)=\ldots=w_{1}(n)=\frac{1}{n}
$$

Then for $t=1, \ldots, T$ we repeat the following cycle:

1. Find $h_{t} \in \mathcal{H}$ such that weighted error

$$
\varepsilon_{t}=w_{t}(1) I\left(h_{t}\left(X_{1}\right) \neq Y_{1}\right)+\ldots+w_{t}(n) I\left(h_{t}\left(X_{n}\right) \neq Y_{n}\right)
$$

is as small as possible.
2. Let $\alpha_{t}=\frac{1}{2} \log \frac{1-\varepsilon_{t}}{\varepsilon_{t}}$ and update the weights:

$$
w_{t+1}(i)=w_{t}(i) \frac{e^{-\alpha_{t} Y_{i} h_{t}\left(X_{i}\right)}}{Z_{t}}
$$

where

$$
Z_{t}=\sum_{i=1}^{n} w_{t} e^{-\alpha_{t} Y_{i} h_{t}\left(X_{i}\right)}
$$

is the normalizing factor to ensure that updated weights add up to one.
After we repeat this cycle T times we output the function

$$
f(X)=\alpha_{1} h_{1}(X)+\ldots+\alpha_{T} h_{T}(X)
$$

and use $\operatorname{sign}(f(X))$ as the prediction of label Y.
First of all, we can assume that the weighted error ε_{t} at each step t is less than 0.5 since, otherwise, if we make a mistake more than half of the time we should simply predict the opposite label. For $\varepsilon_{t} \leq 0.5$ we have,

$$
\alpha_{t}=\frac{1}{2} \log \frac{1-\epsilon_{t}}{\epsilon_{t}} \geq 0
$$

Also, we have

$$
Y_{i} h_{t}\left(X_{i}\right)=\left\{\begin{array}{cc}
+1 & \text { if } h_{t}\left(X_{i}\right)=Y_{i} \\
-1 & \text { if } h_{t}\left(X_{i}\right) \neq Y_{i}
\end{array}\right.
$$

Therefore, if h_{t} makes a mistake on the example $\left(X_{i}, Y_{i}\right)$ which means that $h_{t}\left(X_{i}\right) \neq Y_{i}$ or, equivalently, $Y_{i} h_{t}\left(X_{i}\right)=-1$ then

$$
w_{t+1}(i)=\frac{e^{-\alpha_{t} Y_{i} h_{t}\left(X_{i}\right)}}{Z_{t}} w_{t}(i)=\frac{e^{\alpha_{t}}}{Z_{t}} w_{t}(i) .
$$

On the other hand, if h_{t} predicts the label Y_{i} correctly then $Y_{i} h_{t}\left(X_{i}\right)=1$ and

$$
w_{t+1}(i)=\frac{e^{-\alpha_{t} Y_{i} h_{t}\left(X_{i}\right)}}{Z_{t}} w_{t}(i)=\frac{e^{-\alpha_{t}}}{Z_{t}} w_{t}(i) .
$$

Since $\alpha_{t} \geq 0$ this means that we increase the relative weight of the i th example if we made a mistake on this example and decrease the relative weight if we predicted the label Y_{i} correctly. Therefore, when we try to minimize the weighted error at the next step $t+1$ we will pay more attention to the examples misclassified at the previous step.

Theorem: The proportion of mistakes made on the data by the output classifier $\operatorname{sign}(f(X))$ is bounded by

$$
\left.\frac{1}{n} \sum_{i=1}^{n} I\left(\operatorname{sign}\left(f\left(X_{i}\right)\right)\right) \neq Y_{i}\right) \leq \prod_{t=1}^{T} \sqrt{4 \varepsilon_{t}\left(1-\varepsilon_{t}\right)}
$$

Remark: If the weighted errors ε_{t} will be strictly less than 0.5 at each step meaning that we predict the labels better than tossing a coin then the error of the combined classifer will decrease exponentially fast with the number of rounds T. For example, if $\varepsilon_{t} \leq 0.4$ then $4 \epsilon_{t}\left(1-\epsilon_{t}\right) \leq 4(0.4)(0.6)=0.96$ and the error will decrease as fast as 0.96^{T}.

Proof. Using that $I(x \leq 0) \leq e^{-x}$ as shown in figure 32.1 we can bound the indicator of making an error by

$$
\begin{equation*}
I\left(\operatorname{sign}\left(f\left(X_{i}\right)\right) \neq Y_{i}\right)=I\left(Y_{i} f\left(X_{i}\right) \leq 0\right) \leq e^{-Y_{i} f\left(X_{i}\right)}=e^{-Y_{i} \sum_{t=1}^{T} \alpha_{t} h_{t}\left(X_{i}\right)} \tag{32.1}
\end{equation*}
$$

Next, using the step 2 of AdaBoost algorithm which describes how the weights are updated we can express the weights at each step in terms of the weights at the previous step and we can write the following equation:

$$
\begin{aligned}
w_{T+1}(i) & =\frac{w_{T}(i) e^{-\alpha_{T} Y_{i} h_{T}\left(X_{i}\right)}}{Z_{T}}=\frac{e^{-\alpha_{T} Y_{i} h_{T}\left(X_{i}\right)}}{Z_{T}} \frac{w_{T-1}(i) e^{-\alpha_{T-1} Y_{i} h_{T-1}\left(X_{i}\right)}}{Z_{T-1}} \\
& =\text { repeat this recursively over } t \\
& =\frac{e^{-\alpha_{T} Y_{i} h_{T}\left(X_{i}\right)}}{Z_{T}} \frac{e^{-\alpha_{T-1} Y_{i} h_{T-1}\left(X_{i}\right)}}{Z_{T-1}} \ldots \frac{e^{-\alpha_{1} Y_{i} h_{1}\left(X_{i}\right)}}{Z_{1}} w_{1}(i)=\frac{e^{-Y_{i} f\left(X_{i}\right)}}{\prod_{t=1}^{T} Z_{t}} \frac{1}{n} .
\end{aligned}
$$

Figure 32.1: Example.

This implies that

$$
\frac{1}{n} e^{-Y_{i} f\left(X_{i}\right)}=w_{T+1}(i) \prod_{t=1}^{T} Z_{t}
$$

Combining this with (32.1) we can write

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} I\left(\operatorname{sign}\left(f\left(X_{i}\right) \neq Y_{i}\right)\right) \leq \sum_{i=1}^{n} \frac{1}{n} e^{-Y_{i} f\left(X_{i}\right)}=\prod_{t=1}^{T} Z_{t} \sum_{i=1}^{n} w_{T+1}(i)=\prod_{t=1}^{T} Z_{t} \tag{32.2}
\end{equation*}
$$

Next we will compute

$$
Z_{t}=\sum_{i=1}^{n} w_{t}(i) e^{-\alpha_{t} Y_{i} h_{t}\left(X_{i}\right)}
$$

As we have already mentioned above, $Y_{i} h_{t}\left(X_{i}\right)$ is equal to -1 or +1 depending on whether h_{t} makes a mistake or predicts the label Y_{i} correctly. Therefore, we can write,

$$
\begin{aligned}
Z_{t} & =\sum_{i=1}^{n} w_{t}(i) e^{-\alpha_{t} Y_{i} h_{t}\left(X_{i}\right)}=\sum_{i=1}^{n} w_{t}(i) I\left(Y_{i}=h_{t}\left(X_{i}\right)\right) e^{-\alpha_{t}}+\sum_{i=1}^{n} w_{t}(i) I\left(Y_{i} \neq h_{t}\left(X_{i}\right)\right) e^{\alpha_{t}} \\
& =e^{-\alpha_{t}}(1-\underbrace{\left.\sum_{i=1}^{n} w_{t}(i) I\left(Y_{i} \neq h_{t}\left(X_{i}\right)\right)\right)}_{\varepsilon_{t}}+e^{e^{\alpha_{t}}} \underbrace{\sum_{i=1}^{n} w_{t}(i) I\left(Y_{i}=h_{t}\left(X_{i}\right)\right)}_{\varepsilon_{t}} \\
& =e^{-\alpha_{t}}\left(1-\varepsilon_{t}\right)+e^{\alpha_{t}} \varepsilon_{t} .
\end{aligned}
$$

Up to this point all computations did not depend on the choice of α_{t} but since we bounded the error by $\prod_{t=1}^{T} Z_{t}$ we would like to make each Z_{t} as small as possible and, therefore, we choose α_{t} that minimizes Z_{t}. Simple calculus shows that we should take $\alpha_{t}=\frac{1}{2} \log \frac{1-\varepsilon_{t}}{\varepsilon_{t}}$ which is precisely the choice made in AdaBoost algorithm. For this
choice of α_{t} we get

$$
Z_{t}=\left(1-\varepsilon_{t}\right) \sqrt{\frac{\epsilon_{t}}{1-\epsilon_{t}}}+\varepsilon_{t} \sqrt{\frac{1-\epsilon_{t}}{\epsilon_{t}}}=\sqrt{4 \varepsilon_{t}\left(1-\varepsilon_{t}\right)}
$$

and plugging this into (32.2) finishes the proof of the bound.

