
Lecture 29

Simple linear regression.

29.1 Method of least squares.

Suppose that we are given a sequence of observations

(X1, Y1), . . . , (Xn, Yn)

where each observation is a pair of numbers X,Yi ∈ �
. Suppose that we want to

predict variable Y as a function of X because we believe that there is some underlying
relationship between Y and X and, for example, Y can be approximated by a function
of X, i.e. Y ≈ f(X). We will consider the simplest case when f(x) is a linear function
of x:

f(x) = β0 + β1x.
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Figure 29.1: The least-squares line.

Of course, we want to find the line that fits our data best and one can define the
measure of the quality of the fit in many different ways. The most common approach
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is to measure how Yi is approximated by β0 + β1Xi in terms of the squared difference
(Yi−(β0+β1Xi))

2 which means that we measure the quality of approximation globally
by the loss function

L =
n∑

i=1

( Yi
︸︷︷︸

actual

−(β0 + β1Xi
︸ ︷︷ ︸

estimate

))2 → minimize over β0, β1

and we want to minimize it over all choices of parameters β0, β1. The line that mini-
mizes this loss is called the least-squares line. To find the critical points we write:

∂L

∂β0
= −

n∑

i=1

2(Yi − (β0 + β1Xi)) = 0

∂L

∂β1

= −
n∑

i=1

2(Yi − (β0 + β1Xi))Xi = 0

If we introduce the notations

X̄ =
1

n

∑

Xi, Ȳ =
1

n

∑

Yi, X2 =
1

n

∑

X2
i , XY =

1

n

∑

XiYi

then the critical point conditions can be rewritten as

β0 + β1X̄ = Ȳ and β0X̄ + β1X2 = XY

and solving it for β0 and β1 we get

β1 =
XY − X̄Ȳ

X2 − X̄2
and β0 = Ȳ − β1X̄.

If each Xi is a vector Xi = (Xi1, . . . , Xik) of dimension k then we can try to
approximate Yis as a linear function of the coordinates of Xi :

Yi ≈ f(Xi) = β0 + β1Xi1 + . . . + βkXik.

In this case one can also minimize the square loss:

L =
∑

(Yi − (β0 + β1Xi1 + . . . + βkXik))
2 → minimize over β0, β1, . . . , βk

by taking the derivatives and solving the system of linear equations to find the pa-
rameters β0, . . . , βk.
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29.2 Simple linear regression.

First of all, when the response variable Y in a random couple (X, Y ) is predicted as
a function of X then one can model this situation by

Y = f(X) + ε

where the random variable ε is independent of X (it is often called random noise)
and on average it is equal to zero:

�
ε = 0. For a fixed X, the response variable Y in

this model on average will be equal to f(X) since

�
(Y |X) =

�
(f(X) + ε|X) = f(X) +

�
(ε|X) = f(X) +

�
ε = f(X).

and f(x) =
�

(Y |X = x) is called the regression function.
Next, we will consider a simple linear regression model in which the regression

function is linear, i.e. f(x) = β0 + β1x, and the response variable Y is modeled as

Y = f(X) + ε = β0 + β1X + ε,

where the random noise ε is assumed to have normal distribution N(0, σ2).
Suppose that we are given a sequence (X1, Y1), . . . , (Xn, Yn) that is described by

the above model:
Yi = β0 + β1Xi + εi

and ε1, . . . , εn are i.i.d. N(0, σ2). We have three unknown parameters - β0, β1 and σ2

- and we want to estimate them using the given sample. Let us think of the points
X1, . . . , Xn as fixed and non random and deal with the randomness that comes from
the noise variables εi. For a fixed Xi, the distribution of Yi is equal to N(f(Xi), σ

2)
with p.d.f.

f(y) =
1√
2πσ

e−
(y−f(Xi))

2

2σ2

and the likelihood function of the sequence Y1, . . . , Yn is:

f(Y1, . . . , Yn) =
( 1√

2πσ

)n

e−
1

2σ2

Pn
i=1(Yi−f(Xi))

2

=
( 1√

2πσ

)n

e−
1

2σ2

Pn
i=1(Yi−β0−β1Xi)

2

.

Let us find the maximum likelihood estimates of β0, β1 and σ2 that maximize this
likelihood function. First of all, it is obvious that for any σ2 we need to minimize

n∑

i=1

(Yi − β0 − β1Xi)
2
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over β0, β1 which is the same as finding the least-squares line and, therefore, the MLE
for β0 and β1 are given by

β̂0 = Ȳ − β̂1X̄ and β̂1 =
XY − X̄Ȳ

X2 − X̄2
.

Finally, to find the MLE of σ2 we maximize the likelihood over σ2 and get:

σ̂2 =
1

n

n∑

i=1

(Yi − β̂0 − β̂1Xi)
2.

Let us now compute the joint distribution of β̂0 and β̂1. Since Xis are fixed, these
estimates are written as linear combinations of Yis which have normal distributions
and, as a result, β̂0 and β̂1 will have normal distributions. All we need to do is find
their means, variances and covariance. First, if we write β̂1 as

β̂1 =
XY − X̄Ȳ

X2 − X̄2
=

1

n

∑
(Xi − X̄)Yi

X̄2 − X̄2

then its expectation can be computed:

�
(β̂1) =

∑
(Xi − X̄)

�
Yi

n(X2 − X̄2)
=

∑
(Xi − X̄)(β0 + β1Xi)

n(X2 − X̄2)

= β0

∑
(Xi − X̄)

n(X2 − X̄2)
︸ ︷︷ ︸

=0

+β1

∑
Xi(Xi − X̄)

n(X2 − X̄2)
= β1

nX2 − nX̄2

n(X2 − X̄2)
= β1.

Therefore, β̂1 is unbiased estimator of β1. The variance of β̂1 can be computed:

Var(β̂1) = Var
(∑

(Xi − X̄)Yi

n(X2 − X̄2)

)

=
∑

Var
( (Xi − X̄)Yi

n(X2 − X̄2)

)

=
∑( Xi − X̄

n(X2 − X̄2)

)2

σ2 =
1

n2(X2 − X̄2)2
n(X2 − X̄2)σ2

=
σ2

n(X2 − X̄2)
.

Therefore, β̂1 ∼ N
(

β1,
σ2

n(X2−X̄2)

)

. A similar straightforward computations give:

β̂0 = Ȳ − β̂1X̄ ∼ N
(

β0,
( 1

n
+

X̄2

n(X2 − X̄2)

)

σ2
)

and

Cov(β̂0, β̂1) = − X̄σ2

n(X2 − X̄2)
.


