
Lecture 28

28.1 Kolmogorov-Smirnov test.

Suppose that we have an i.i.d. sample X1, . . . , Xn with some unknown distribution �
and we would like to test the hypothesis that � is equal to a particular distribution

� 0, i.e. decide between the following hypoheses:
{

H1 : � = � 0

H2 : otherwise

We considered this problem before when we talked about goodness-of-fit test for
continuous distribution but, in order to use Pearson’s theorem and chi-square test,
we discretized the distribution and considered a weaker derivative hypothesis. We
will now consider a different test due to Kolmogorov and Smirnov that avoids this
discretization and in a sense is more consistent.

Let us denote by F (x) = � (X1 ≤ x) a cumulative distribution function and
consider what is called an empirical distribution function:

Fn(x) = � n(X ≤ x) =
1

n

n∑

i=1

I(Xi ≤ x)

that is simply the proportion of the sample points below level x. For any fixed point
x ∈ �

the law of large numbers gives that

Fn(x) =
1

n

n∑

i=1

I(Xi ≤ x) → �
I(X1 ≤ x) = � (X1 ≤ x) = F (x),

i.e. the proportion of the sample in the set (−∞, x] approximates the probability of
this set.

It is easy to show from here that this approximation holds uniformly over all
x ∈ �

:
sup
x∈ �

|Fn(x) − F (x)| → 0
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Figure 28.1: C.d.f. and empirical d.f.

i.e. the largest difference between Fn and F goes to 0 in probability. The key
observation in the Kolmogorov-Smirnov test is that the distribution of this supremum
does not depend on the distribution � of the sample.

Theorem 1. The distribution of supx∈ � |Fn(x) − F (x)| does not depend on F .
Proof. For simplicity, let us assume that F is continuous, i.e. the distribution is

continuous. Let us define the inverse of F by

F−1(y) = min{x : F (x) ≥ y}.

Then making the change of variables y = F (x) or x = F−1(y) we can write

� (sup
x∈ �

|Fn(x) − F (x)| ≤ t) = � ( sup
0≤y≤1

|Fn(F−1(y)) − y| ≤ t).

Using the definition of the empirical d.f. Fn we can write

Fn(F−1(y)) =
1

n

n∑

i=1

I(Xi ≤ F−1(y)) =
1

n

n∑

i=1

I(F (Xi) ≤ y)

and, therefore,

� ( sup
0≤y≤1

|Fn(F−1(y)) − y| ≤ t) = �
(

sup
0≤y≤1

∣
∣
∣
1

n

n∑

i=1

I(F (Xi) ≤ y) − y
∣
∣
∣ ≤ t

)

.

The distribution of F (Xi) is uniform on the interval [0, 1] because the c.d.f. of F (X1)
is

� (F (X1) ≤ t) = � (X1 ≤ F−1(t)) = F (F−1(t)) = t.

Therefore, the random variables

Ui = F (Xi) for i ≤ n
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are independent and have uniform distribution on [0, 1] and, combining with the
above, we proved that

� (sup
x∈ �

|Fn(x) − F (x)| ≤ t) = �
(

sup
0≤y≤1

∣
∣
∣
1

n

n∑

i=1

I(Ui ≤ y) − y
∣
∣
∣ ≤ t

)

which is clearly independent of F .

Next, we will formulate the main result on which the KS test is based. First of
all, let us note that for a fixed x the CLT implies that

√
n(Fn(x) − F (x)) → N

(

0, F (x)(1 − F (x))
)

because F (x)(1− F (x)) is the variance of I(X1 ≤ x). If turns out that if we consider

√
n sup

x∈ �
|Fn(x) − F (x)|

it will also converge to some distribution.
Theorem 2. We have,

� (
√

nsupx∈ � |Fn(x) − F (x)| ≤ t) → H(t) = 1 − 2

∞∑

i=1

(−1)i−1e−2i2t

where H(t) is the c.d.f. of Kolmogorov-Smirnov distribution.
If we formulate our hypotheses in terms of cumulative distribution functions:

{
H1 : F = F0 for a givenF0

H2 : otherwise

then based on Theorems 1 and 2 the Kolmogorov-Smirnov test is formulated as fol-
lows:

δ =

{
H1 : Dn ≤ c
H2 : Dn > c

where
Dn =

√
n sup

x∈ �
|Fn(x) − F0(x)|

and the threshold c depends on the level of significance α and can be found from the
condition

α = � (δ 6= H1|H1) = � (Dn ≥ c|H1).

In Theorem 1 we showed that the distribution of Dn does not depend on the unknown
distribution F and, therefore, it can tabulated. However, the distribution of Dn
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depends on n so one needs to use advanced tables that contain the table for the
sample size n of interest. Another way to find c, especially when the sample size is
large, is to use Theorem 2 which tells that the distribution of Dn can be approximated
by the Kolmogorov-Smirnov distribution and, therefore,

α = � (Dn ≥ c|H1) ≈ 1 − H(c).

and we can use the table for H to find c.
To explain why Kolmogorov-Smirnov test makes sense let us imagine that the first

hypothesis fails and H2 holds which means that F 6= F0.

Fn

F (true)

F0 (hypothesis)

Figure 28.2: The case when F 6= F0.

Since F is the true c.d.f. of the data, by law of large numbers the empirical d.f.
Fn will converge to F as shown in figure 28.2 and as a result it will not approximate
F0, i.e. for large n we will have

sup
x

|Fn(x) − F0(x)| > δ

for small enough δ. Multiplying this by
√

n will give that

Dn =
√

n sup
x∈ �

|Fn(x) − F0(x)| >
√

nδ.

If H1 fails then Dn >
√

nδ → +∞ as n → ∞. Therefore, it seems natural to reject
H1 when Dn becomes too large which is exactly what happens in KS test.

Example. Let us consider a sample of size 10:

0.58, 0.42, 0.52, 0.33, 0.43, 0.23, 0.58, 0.76, 0.53, 0.64

and let us test the hypothesis that the distribution of the sample is uniform on [0, 1]:

{
H1 : F (x) = F0(x) = x
H2 : otherwise
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Figure 28.3: Fn and F0 in the example.

The figure 28.3 shows the c.d.f. F0 and empirical d.f. Fn(x).
To compute Dn we notice that the largest difference between F0(x) and Fn(x) is

achieved either before or after one of the jumps, i.e.

sup
0≤x≤1

|Fn(x) − F (x)| = max
1≤i≤n

{
|Fn(X−

i ) − F (Xi)| - before the ith jump
|Fn(Xi) − F (Xi)| - after the ith jump

Writing these differences for our data we get

before the jump after the jump
|0 − 0.23| |0.1 − 0.23|
|0.1 − 0.33| |0.2 − 0.33|
|0.2 − 0.42| |0.3 − 0.42|
|0.3 − 0.43| |0.4 − 0.43|
· · ·

The largest value will be achieved at |0.9 − 0.64| = 0.26 and, therefore,

Dn =
√

n sup
0≤x≤1

|Fn(x) − x| =
√

10 × 0.26 = 0.82.

If we take the level of significance α = 0.05 then

1 − H(c) = 0.05 ⇒ c = 1.35
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and according to KS test

δ =

{
H1 : Dn ≤ 1.35
H2 : Dn > 1.35

we accept the null hypothesis H1 since Dn = 0.82 < c = 1.35.


