Lecture 28

28.1 Kolmogorov-Smirnov test.

Suppose that we have an i.i.d. sample X_{1}, \ldots, X_{n} with some unknown distribution \mathbb{P} and we would like to test the hypothesis that \mathbb{P} is equal to a particular distribution \mathbb{P}_{0}, i.e. decide between the following hypoheses:

$$
\begin{cases}H_{1}: & \mathbb{P}=\mathbb{P}_{0} \\ H_{2}: & \text { otherwise }\end{cases}
$$

We considered this problem before when we talked about goodness-of-fit test for continuous distribution but, in order to use Pearson's theorem and chi-square test, we discretized the distribution and considered a weaker derivative hypothesis. We will now consider a different test due to Kolmogorov and Smirnov that avoids this discretization and in a sense is more consistent.

Let us denote by $F(x)=\mathbb{P}\left(X_{1} \leq x\right)$ a cumulative distribution function and consider what is called an empirical distribution function:

$$
F_{n}(x)=\mathbb{P}_{n}(X \leq x)=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i} \leq x\right)
$$

that is simply the proportion of the sample points below level x. For any fixed point $x \in \mathbb{R}$ the law of large numbers gives that

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i} \leq x\right) \rightarrow \mathbb{E} I\left(X_{1} \leq x\right)=\mathbb{P}\left(X_{1} \leq x\right)=F(x)
$$

i.e. the proportion of the sample in the set $(-\infty, x]$ approximates the probability of this set.

It is easy to show from here that this approximation holds uniformly over all $x \in \mathbb{R}$:

$$
\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right| \rightarrow 0
$$

Figure 28.1: C.d.f. and empirical d.f.
i.e. the largest difference between F_{n} and F goes to 0 in probability. The key observation in the Kolmogorov-Smirnov test is that the distribution of this supremum does not depend on the distribution \mathbb{P} of the sample.

Theorem 1. The distribution of $\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right|$ does not depend on F.
Proof. For simplicity, let us assume that F is continuous, i.e. the distribution is continuous. Let us define the inverse of F by

$$
F^{-1}(y)=\min \{x: F(x) \geq y\} .
$$

Then making the change of variables $y=F(x)$ or $x=F^{-1}(y)$ we can write

$$
\mathbb{P}\left(\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right| \leq t\right)=\mathbb{P}\left(\sup _{0 \leq y \leq 1}\left|F_{n}\left(F^{-1}(y)\right)-y\right| \leq t\right) .
$$

Using the definition of the empirical d.f. F_{n} we can write

$$
F_{n}\left(F^{-1}(y)\right)=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i} \leq F^{-1}(y)\right)=\frac{1}{n} \sum_{i=1}^{n} I\left(F\left(X_{i}\right) \leq y\right)
$$

and, therefore,

$$
\mathbb{P}\left(\sup _{0 \leq y \leq 1}\left|F_{n}\left(F^{-1}(y)\right)-y\right| \leq t\right)=\mathbb{P}\left(\sup _{0 \leq y \leq 1}\left|\frac{1}{n} \sum_{i=1}^{n} I\left(F\left(X_{i}\right) \leq y\right)-y\right| \leq t\right)
$$

The distribution of $F\left(X_{i}\right)$ is uniform on the interval $[0,1]$ because the c.d.f. of $F\left(X_{1}\right)$ is

$$
\mathbb{P}\left(F\left(X_{1}\right) \leq t\right)=\mathbb{P}\left(X_{1} \leq F^{-1}(t)\right)=F\left(F^{-1}(t)\right)=t
$$

Therefore, the random variables

$$
U_{i}=F\left(X_{i}\right) \text { for } i \leq n
$$

are independent and have uniform distribution on $[0,1]$ and, combining with the above, we proved that

$$
\mathbb{P}\left(\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right| \leq t\right)=\mathbb{P}\left(\sup _{0 \leq y \leq 1}\left|\frac{1}{n} \sum_{i=1}^{n} I\left(U_{i} \leq y\right)-y\right| \leq t\right)
$$

which is clearly independent of F.
Next, we will formulate the main result on which the KS test is based. First of all, let us note that for a fixed x the CLT implies that

$$
\sqrt{n}\left(F_{n}(x)-F(x)\right) \rightarrow N(0, F(x)(1-F(x)))
$$

because $F(x)(1-F(x))$ is the variance of $I\left(X_{1} \leq x\right)$. If turns out that if we consider

$$
\sqrt{n} \sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right|
$$

it will also converge to some distribution.
Theorem 2. We have,

$$
\mathbb{P}\left(\sqrt{n} \sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right| \leq t\right) \rightarrow H(t)=1-2 \sum_{i=1}^{\infty}(-1)^{i-1} e^{-2 i^{2} t}
$$

where $H(t)$ is the c.d.f. of Kolmogorov-Smirnov distribution.
If we formulate our hypotheses in terms of cumulative distribution functions:

$$
\begin{cases}H_{1}: & F=F_{0} \text { for a given } F_{0} \\ H_{2}: & \text { otherwise }\end{cases}
$$

then based on Theorems 1 and 2 the Kolmogorov-Smirnov test is formulated as follows:

$$
\delta= \begin{cases}H_{1}: & D_{n} \leq c \\ H_{2}: & D_{n}>c\end{cases}
$$

where

$$
D_{n}=\sqrt{n} \sup _{x \in \mathbb{R}}\left|F_{n}(x)-F_{0}(x)\right|
$$

and the threshold c depends on the level of significance α and can be found from the condition

$$
\alpha=\mathbb{P}\left(\delta \neq H_{1} \mid H_{1}\right)=\mathbb{P}\left(D_{n} \geq c \mid H_{1}\right) .
$$

In Theorem 1 we showed that the distribution of D_{n} does not depend on the unknown distribution F and, therefore, it can tabulated. However, the distribution of D_{n}
depends on n so one needs to use advanced tables that contain the table for the sample size n of interest. Another way to find c, especially when the sample size is large, is to use Theorem 2 which tells that the distribution of D_{n} can be approximated by the Kolmogorov-Smirnov distribution and, therefore,

$$
\alpha=\mathbb{P}\left(D_{n} \geq c \mid H_{1}\right) \approx 1-H(c)
$$

and we can use the table for H to find c.
To explain why Kolmogorov-Smirnov test makes sense let us imagine that the first hypothesis fails and H_{2} holds which means that $F \neq F_{0}$.

Figure 28.2: The case when $F \neq F_{0}$.
Since F is the true c.d.f. of the data, by law of large numbers the empirical d.f. F_{n} will converge to F as shown in figure 28.2 and as a result it will not approximate F_{0}, i.e. for large n we will have

$$
\sup _{x}\left|F_{n}(x)-F_{0}(x)\right|>\delta
$$

for small enough δ. Multiplying this by \sqrt{n} will give that

$$
D_{n}=\sqrt{n} \sup _{x \in \mathbb{R}}\left|F_{n}(x)-F_{0}(x)\right|>\sqrt{n} \delta .
$$

If H_{1} fails then $D_{n}>\sqrt{n} \delta \rightarrow+\infty$ as $n \rightarrow \infty$. Therefore, it seems natural to reject H_{1} when D_{n} becomes too large which is exactly what happens in KS test.

Example. Let us consider a sample of size 10 :

$$
0.58,0.42,0.52,0.33,0.43,0.23,0.58,0.76,0.53,0.64
$$

and let us test the hypothesis that the distribution of the sample is uniform on $[0,1]$:

$$
\begin{cases}H_{1}: & F(x)=F_{0}(x)=x \\ H_{2}: & \text { otherwise }\end{cases}
$$

Figure 28.3: F_{n} and F_{0} in the example.

The figure 28.3 shows the c.d.f. F_{0} and empirical d.f. $F_{n}(x)$.
To compute D_{n} we notice that the largest difference between $F_{0}(x)$ and $F_{n}(x)$ is achieved either before or after one of the jumps, i.e.

$$
\sup _{0 \leq x \leq 1}\left|F_{n}(x)-F(x)\right|=\max _{1 \leq i \leq n} \begin{cases}\left|F_{n}\left(X_{i}^{-}\right)-F\left(X_{i}\right)\right| & \text { - before the } i \text { th jump } \\ \left|F_{n}\left(X_{i}\right)-F\left(X_{i}\right)\right| & \text { - after the } i \text { th jump }\end{cases}
$$

Writing these differences for our data we get

$$
\begin{array}{ll}
\text { before the jump } & \text { after the jump } \\
|0-0.23| & |0.1-0.23| \\
|0.1-0.33| & |0.2-0.33| \\
|0.2-0.42| & |0.3-0.42| \\
|0.3-0.43| & |0.4-0.43|
\end{array}
$$

The largest value will be achieved at $|0.9-0.64|=0.26$ and, therefore,

$$
D_{n}=\sqrt{n} \sup _{0 \leq x \leq 1}\left|F_{n}(x)-x\right|=\sqrt{10} \times 0.26=0.82
$$

If we take the level of significance $\alpha=0.05$ then

$$
1-H(c)=0.05 \Rightarrow c=1.35
$$

and according to KS test

$$
\delta=\left\{\begin{array}{cl}
H_{1}: & D_{n} \leq 1.35 \\
H_{2}: & D_{n}>1.35
\end{array}\right.
$$

we accept the null hypothesis H_{1} since $D_{n}=0.82<c=1.35$.

