Lecture 26

26.1 Test of independence.

In this lecture we will consider the situation when data comes from the sample space \mathcal{X} that consists of pairs of two features and each feature has a finite number of categories or, simply,

$$
\mathcal{X}=\{(i, j): i=1, \ldots, a, j=1, \ldots, b\} .
$$

If we have an i.i.d. sample X_{1}, \ldots, X_{n} with some distribution \mathbb{P} on \mathcal{X} then each X_{i} is a pair $\left(X_{i}^{1}, X_{i}^{2}\right)$ where X_{i}^{1} can take a different values and X_{i}^{2} can take b different values. Let $N_{i j}$ be a count of all observations equal to (i, j), i.e. with first feature equal to i and second feature equal to j, as shown in table below.

Table 26.1: Contingency table.

	Feature 2			
Feature 1	$\mathbf{1}$	$\mathbf{2}$	\cdots	\mathbf{b}
$\mathbf{1}$	N_{11}	N_{12}	\cdots	$N_{1 b}$
$\mathbf{2}$	N_{21}	N_{22}	\cdots	$N_{2 b}$
\vdots	\vdots	\vdots	\vdots	\vdots
\mathbf{a}	$N_{a 1}$	$N_{a 2}$	\cdots	$N_{a b}$

We would like to test the independence of two features which means that

$$
\mathbb{P}(X=(i, j))=\mathbb{P}\left(X^{1}=i\right) \mathbb{P}\left(X^{2}=j\right)
$$

In we introduce the notations

$$
\mathbb{P}(X=(i, j))=\theta_{i j}, \mathbb{P}\left(X^{1}=i\right)=p_{i} \text { and } \mathbb{P}\left(X^{2}=j\right)=q_{j}
$$

then we want to test that for all i and j we have $\theta_{i j}=p_{i} q_{j}$. Therefore, our hypotheses can be formulated as follows:

$$
\begin{cases}H_{1}: & \theta_{i j}=p_{i} q_{j} \text { for some }\left(p_{1}, \ldots, p_{a}\right) \text { and }\left(q_{1}, \ldots, q_{b}\right) \\ H_{2}: & \text { otherwise }\end{cases}
$$

Of course, these hypotheses fall into the case of composite χ^{2} goodness-of-fit test from previous lecture because our random variables take

$$
r=a \times b
$$

possible values (all pairs of features) and we want to test that their distribution comes from the family of distributions with independent features described by the hypothesis H_{1}. Since $p_{i} \mathrm{~s}$ and $q_{j} \mathrm{~s}$ should add up to one

$$
p_{1}+\ldots+p_{a}=1 \text { and } q_{1}+\ldots+q_{b}=1
$$

one parameter in each sequence, for example p_{a} and q_{b}, can be computed in terms of other probabilities and we can take $\left(p_{1}, \ldots, p_{a-1}\right)$ and $\left(q_{1}, \ldots, q_{b-1}\right)$ as free parameters of the model. This means that the dimension of the parameter set is

$$
s=(a-1)+(b-1) .
$$

Therefore, if we find the maximum likelihood estimates for the parameters of this model then the chi-squared statistic:

$$
T=\sum_{i, j} \frac{\left(N_{i j}-n p_{i}^{*} q_{j}^{*}\right)^{2}}{n p_{i}^{*} q_{j}^{*}} \rightarrow \chi_{r-s-1}^{2}=\chi_{a b-(a-1)-(b-1)-1}^{2}=\chi_{(a-1)(b-1)}^{2}
$$

converges in distribution to $\chi_{(a-1)(b-1)}^{2}$ distribution with $(a-1)(b-1)$ degrees of freedom. To formulate the test it remains to find the maximum likelihood estimates of the parameters. We need to maximize the likelihood function

$$
\prod_{i, j}\left(p_{i} q_{j}\right)^{N_{i j}}=\prod_{i} p_{i}^{\sum_{j} N_{i j}} \prod_{j} q_{j}^{\sum_{i} N_{i j}}=\prod_{i} p_{i}^{N_{i+}} \prod_{j} q_{j}^{N_{+j}}
$$

where we introduced the notations

$$
N_{i+}=\sum_{j} N_{i j}
$$

for the total number of observations in the i th row or, in other words, the number of observations with the first feature equal to i and

$$
N_{+j}=\sum_{i} N_{i j}
$$

for the total number of observations in the j th column or, in other words, the number of observations with the second feature equal to j. Since $p_{i} \mathrm{~s}$ and $q_{j} \mathrm{~s}$ are not related to each other it is obvious that maximizing the likelihood function above is equivalent to maximizing $\prod_{i} p_{i}^{N_{i+}}$ and $\prod_{j} q_{j}^{N_{+j}}$ separately. Let us not forget that we maximize given the constraints that $p_{i} \mathrm{~S}$ and $q_{j} \mathrm{~S}$ add up to 1 (otherwise, we could let them be equal to $+\infty$). Let us solve, for example, the following optimization problem:

$$
\operatorname{maximize} \prod_{i} p_{i}^{N_{i+}} \text { given that } \sum_{i=1}^{a} p_{i}=1
$$

or taking the logarithm

$$
\text { maximize } \sum N_{i+} \log p_{i} \text { given that } \sum_{i=1}^{a} p_{i}=1
$$

We can use the method of Lagrange multipliers. If we consider the function

$$
L=\sum N_{i+} \log p_{i}-\lambda\left(\sum_{i=1}^{a} p_{i}-1\right)
$$

then we need to find the saddle point of L by maximizing it with respect to $p_{i} \mathrm{~S}$ and minimizing it with respect to λ. Taking the derivative with respect to p_{i} we get

$$
\frac{\partial L}{\partial p_{i}}=0 \Rightarrow \frac{N_{i+}}{p_{i}}=\lambda \Rightarrow p_{i}=\frac{N_{i+}}{\lambda}
$$

and taking the derivative with respect to λ we get

$$
\frac{\partial L}{\partial \lambda}=0 \Rightarrow \sum_{i=1}^{a} p_{i}=1
$$

Combining these two conditions we get

$$
\sum p_{i}=\sum \frac{N_{i+}}{\lambda}=\frac{n}{\lambda}=1 \Rightarrow \lambda=n
$$

and, therefore, we get that the MLE for p_{i} :

$$
p_{i}^{*}=\frac{N_{i+}}{n}
$$

Similarly, the MLE for q_{j} is:

$$
q_{j}^{*}=\frac{N_{+j}}{n} .
$$

Therefore, chi-square statistic T in this case can be written as

$$
T=\sum_{i, j} \frac{\left(N_{i j}-N_{i+} N_{+j} / n\right)^{2}}{N_{i+} N_{+j} / n}
$$

and the decision rule is given by

$$
\delta= \begin{cases}H_{1}: & T \leq c \\ H_{2}: & T>c\end{cases}
$$

where the threshold is determined from the condition

$$
\chi_{(a-1)(b-1)}^{2}(c,+\infty)=\alpha
$$

Example. In 1992 poll 189 Montana residents were asked were asked whether their personal financial status was worse, the same, or better than one year ago. The opinions were divided into three groups by the income rage: under 20K, between 20 K and 35 K , and over 35 K . We would like to test if the opinion was independent of the income range at the level of significance $\alpha=0.05$.

Table 26.2: Montana outlook poll.

	$b=3$			
$a=3$	Worse	Same	Better	
$\leq 20 \mathrm{~K}$	20	15	12	47
$(20 \mathrm{~K}, 35 \mathrm{~K})$	24	27	32	83
$\geq 35 \mathrm{~K}$	14	22	23	59
	58	64	67	189

The chi-square statistic is

$$
T=\frac{\left(20-\frac{47 \times 58}{189}\right)^{2}}{\frac{47 \times 58}{189}}+\ldots+\frac{\left(23-\frac{67 \times 59}{189}\right)^{2}}{\frac{67 \times 59}{189}}=5.21
$$

and the threshold c :

$$
\chi_{(a-1)(b-1)}^{2}(c,+\infty)=\chi_{4}^{2}(c, \infty)=\alpha=0.05 \Rightarrow c=9.488
$$

Since $T=5.21<c=9.488$ we accept the hypotheses H_{1} that the opinion is independent of the income range.

