Lecture 25

25.1 Goodness-of-fit for composite hypotheses.

(Textbook, Section 9.2)

Suppose that we have a sample of random variables X_1, \ldots, X_n that can take a finite number of values B_1, \ldots, B_r with unknown probabilities

$$p_1 = \mathbb{P}(X = B_1), \dots, p_r = \mathbb{P}(X = B_r)$$

and suppose that we want to test the hypothesis that this distribution comes from a parameteric family $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$. In other words, if we denote $p_j(\theta) = \mathbb{P}_{\theta}(X = B_j)$, we want to test:

$$\begin{cases} H_1: p_j = p_j(\theta) \text{ for all } j \le r \text{ for some } \theta \in \Theta \\ H_2: \text{ otherwise.} \end{cases}$$

If we wanted to test H_1 for one particular fixed θ we could use the statistic

$$T = \sum_{j=1}^{r} \frac{(\nu_j - np_j(\theta))^2}{np_j(\theta)},$$

and use a simple χ^2 test from last lecture. The situation now is more complicated because we want to test if $p_j = p_j(\theta), j \leq r$ at least for some $\theta \in \Theta$ which means that we have many candidates for θ . One way to approach this problem is as follows.

(Step 1) Assuming that hypothesis H_1 holds, i.e. $\mathbb{P} = \mathbb{P}_{\theta}$ for some $\theta \in \Theta$, we can find an estimate θ^* of this unknown θ and then

(Step 2) try to test whether indeed the distribution \mathbb{P} is equal to \mathbb{P}_{θ^*} by using the statistics

$$T = \sum_{j=1}^{r} \frac{(\nu_j - np_j(\theta^*))^2}{np_j(\theta^*)}$$

in χ^2 test.

This approach looks natural, the only question is what estimate θ^* to use and how the fact that θ^* also depends on the data will affect the convergence of T. It turns out that if we let θ^* be the maximum likelihood estimate, i.e. θ that maximizes the likelihood function

$$\varphi(\theta) = p_1(\theta)^{\nu_1} \dots p_r(\theta)^{\nu_r}$$

then the statistic

$$T = \sum_{j=1}^r \frac{(\nu_j - np_j(\theta^*))^2}{np_j(\theta^*)} \to \chi^2_{r-s-1}$$

converges to χ^2_{r-s-1} distribution with r-s-1 degrees of freedom, where s is the dimension of the parameter set Θ . Of course, here we assume that $s \leq r-2$ so that we have at least one degree of freedom. Very informally, by dimension we understand the number of free parameters that describe the set Θ , which we illustrate by the following examples.

- 1. The family of Bernoulli distributions B(p) has only one free parameter $p \in [0, 1]$ so that the set $\Theta = [0, 1]$ has dimension s = 1.
- 2. The family of normal distributions $N(\mu, \sigma^2)$ has two free parameters $\mu \in \mathbb{R}$ and $\sigma^2 \geq 0$ and the set $\Theta = \mathbb{R} \times [0, \infty)$ has dimension s = 2.
- 3. Let us consider a family of all distributions on the set $\{0, 1, 2\}$. The distribution

$$\mathbb{P}(X=0) = p_1, \mathbb{P}(X=1) = p_2, \mathbb{P}(X=2) = p_3$$

is described by parameters p_1, p_2 and p_3 . But since they are supposed to add up to 1, $p_1 + p_2 + p_3 = 1$, one of these parameters is not free, for example, $p_3 = 1 - p_1 - p_2$. The remaining two parameters belong to a set

$$p_1 \in [0, 1], \ p_2 \in [0, 1 - p_1]$$

shown in figure 25.1, since their sum should not exceed 1 and the dimension of this set is s = 2.

Figure 25.1: Free parameters of a three point distribution.

Example. (textbook, p.545) Suppose that a gene has two possible alleles A_1 and A_2 and the combinations of theses alleles define there possible genotypes A_1A_1, A_1A_2 and A_2A_2 . We want to test a theory that

Probability to pass A_1 to a child $= \theta$: Probability to pass A_2 to a child $= 1 - \theta$:

and the probabilities of genotypes are given by

$$p_1(\theta) = \mathbb{P}(A_1A_1) = \theta^2$$

$$p_2(\theta) = \mathbb{P}(A_1A_2) = 2\theta(1-\theta)$$

$$p_3(\theta) = \mathbb{P}(A_2A_2) = (1-\theta)^2$$
(25.1)

Suppose that given the sample X_1, \ldots, X_n of the population the counts of each genotype are ν_1, ν_2 and ν_3 . To test the theory we want to test the hypotheses

$$\begin{cases} H_1: p_1 = p_1(\theta), p_2 = p_2(\theta), p_3 = p_3(\theta) \text{ for some } \theta \in [0, 1] \\ H_2: \text{ otherwise.} \end{cases}$$

First of all, the dimension of the parameter set is s = 1 since the family of distributions in (25.1) are described by one parameter θ . To find the MLE θ^* we have to maximize the likelihood function

$$p_1(\theta)^{\nu_1} p_2(\theta)^{\nu_2} p_3(\theta)^{\nu_3}$$

or, equivalently, maximize the log-likelihood

$$\log p_1(\theta)^{\nu_1} p_2(\theta)^{\nu_2} p_3(\theta)^{\nu_3} = \nu_1 \log p_1(\theta) + \nu_2 \log p_2(\theta) + \nu_3 \log p_3(\theta) = \nu_1 \log \theta^2 + \nu_2 \log 2\theta (1-\theta) + \nu_3 \log (1-\theta)^2.$$

To find the critical point we take the derivative, set it equal to 0 and solve for θ which gives (we omit these simple steps):

$$\theta^* = \frac{2\nu_1 + \nu_2}{2n}$$

Therefore, under the null hypothesis H_1 the statistic

$$T = \frac{(\nu_1 - np_1(\theta^*))^2}{np_1(\theta^*)} + \frac{(\nu_2 - np_2(\theta^*))^2}{np_2(\theta^*)} + \frac{(\nu_3 - np_3(\theta^*))^2}{np_3(\theta^*)}$$

$$\to \chi^2_{r-s-1} = \chi^2_{3-1-1} = \chi^2_1$$

converges to χ_1^2 distribution with one degree of freedom. If we take the level of significance $\alpha = 0.05$ and find the threshold c so that

$$0.05 = \alpha = \chi_1^2(T > c) \Rightarrow c = 3.841$$

then we can use the following decision rule:

$$\begin{cases} H_1: & T \le c = 3.841 \\ H_2: & T > c = 3.841 \end{cases}$$

General families.

We could use a similar test when the distributions $\mathbb{P}_{\theta}, \theta \in \Theta$ are not necessarily supported by a finite number of points B_1, \ldots, B_r (for example, continuous distributions). In this case if we want to test the hypotheses

$$\begin{cases} H_1: \quad \mathbb{P} = \mathbb{P}_{\theta} \text{ for some } \theta \in \Theta \\ H_2: \quad \text{otherwise} \end{cases}$$

we can discretize them as we did in the last lecture (see figure 25.2), i.e. consider a family of distributions

$$p_j(\theta) = \mathbb{P}_{\theta}(X \in I_j) \text{ for } j \le r,$$

and instead consider derivative hypotheses

$$\begin{cases} H_1: p_j = p_j(\theta) \text{ for some } \theta, j = 1, \cdots, r \\ H_2: \text{ otherwise.} \end{cases}$$

Figure 25.2: Goodness-of-fit for Composite Hypotheses.