Lecture 23

23.1 Pearson's theorem.

Today we will prove one result from probability that will be useful in several statistical tests.

Let us consider r boxes B_{1}, \ldots, B_{r} as in figure 23.1

Figure 23.1:
Assume that we throw n balls X_{1}, \ldots, X_{n} into these boxes randomly independently of each other with probabilities

$$
\mathbb{P}\left(X_{i} \in B_{1}\right)=p_{1}, \ldots, \mathbb{P}\left(X_{i} \in B_{r}\right)=p_{r},
$$

where probabilities add up to one $p_{1}+\ldots+p_{r}=1$. Let ν_{j} be a number of balls in the j th box:

$$
\nu_{j}=\#\left\{\text { balls } X_{1}, \ldots, X_{n} \text { in the box } B_{j}\right\}=\sum_{l=1}^{n} I\left(X_{l} \in B_{j}\right)
$$

On average, the number of balls in the j th box will be $n p_{j}$, so random variable ν_{j} should be close to $n p_{j}$. One can also use Central Limit Theorem to describe how close ν_{j} is to $n p_{j}$. The next result tells us how we can describe in some sense the closeness of ν_{j} to $n p_{j}$ simultaneously for all $j \leq r$. The main difficulty in this Thorem comes from the fact that random variables ν_{j} for $j \leq r$ are not independent, for example, because the total number of balls is equal to n,

$$
\nu_{1}+\ldots+\nu_{r}=n,
$$

i.e. if we know these numbers in $n-1$ boxes we will automatically know their number in the last box.

Theorem. We have that the random variable

$$
\sum_{j=1}^{r} \frac{\left(\nu_{j}-n p_{j}\right)^{2}}{n p_{j}} \rightarrow \chi_{r-1}^{2}
$$

converges in distribution to χ_{r-1}^{2} distribution with $(r-1)$ degrees of freedom.
Proof. Let us fix a box B_{j}. The random variables

$$
I\left(X_{1} \in B_{j}\right), \ldots, I\left(X_{n} \in B_{j}\right)
$$

that indicate whether each observation X_{i} is in the box B_{j} or not are i.i.d. with Bernoully distribution $B\left(p_{j}\right)$ with probability of success

$$
\mathbb{E} I\left(X_{1} \in B_{j}\right)=\mathbb{P}\left(X_{1} \in B_{j}\right)=p_{j}
$$

and variance

$$
\operatorname{Var}\left(I\left(X_{1} \in B_{j}\right)\right)=p_{j}\left(1-p_{j}\right)
$$

Therefore, by Central Limit Theorem we know that the random variable

$$
\begin{aligned}
\frac{\nu_{j}-n p_{j}}{\sqrt{n p_{j}\left(1-p_{j}\right)}} & =\frac{\sum_{l=1}^{n} I\left(X_{l} \in B_{j}\right)-n p_{j}}{\sqrt{n p_{j}\left(1-p_{j}\right)}} \\
& =\frac{\sum_{l=1}^{n} I\left(X_{l} \in B_{j}\right)-n \mathbb{E}}{\sqrt{n \mathrm{Var}}} \rightarrow N(0,1)
\end{aligned}
$$

converges to standard normal distribution. Therefore, the random variable

$$
\frac{\nu_{j}-n p_{j}}{\sqrt{n p_{j}}} \rightarrow \sqrt{1-p_{j}} N(0,1)=N\left(0,1-p_{j}\right)
$$

converges to normal distribution with variance $1-p_{j}$. Let us be a little informal and simply say that

$$
\frac{\nu_{j}-n p_{j}}{\sqrt{n p_{j}}} \rightarrow Z_{j}
$$

where random variable $Z_{j} \sim N\left(0,1-p_{j}\right)$.
We know that each Z_{j} has distribution $N\left(0,1-p_{j}\right)$ but, unfortunately, this does not tell us what the distribution of the sum $\sum Z_{j}^{2}$ will be, because as we mentioned above r.v.s ν_{j} are not independent and their correlation structure will play an important role. To compute the covariance between Z_{i} and Z_{j} let us first compute the covariance between

$$
\frac{\nu_{i}-n p_{i}}{\sqrt{n p_{i}}} \text { and } \frac{\nu_{j}-n p_{j}}{\sqrt{n p_{j}}}
$$

which is equal to

$$
\begin{aligned}
& \mathbb{E} \frac{\nu_{i}-n p_{j}}{\sqrt{n p_{i}}} \frac{\nu_{j}-n p_{j}}{\sqrt{n p_{j}}}=\frac{1}{n \sqrt{p_{i} p_{j}}}\left(\mathbb{E} \nu_{i} \nu_{j}-\mathbb{E} \nu_{i} n p_{j}-\mathbb{E} \nu_{j} n p_{i}+n^{2} p_{i} p_{j}\right) \\
& =\frac{1}{n \sqrt{p_{i} p_{j}}}\left(\mathbb{E} \nu_{i} \nu_{j}-n p_{i} n p_{j}-n p_{j} n p_{i}+n^{2} p_{i} p_{j}\right)=\frac{1}{n \sqrt{p_{i} p_{j}}}\left(\mathbb{E} \nu_{i} \nu_{j}-n^{2} p_{i} p_{j}\right) .
\end{aligned}
$$

To compute $\mathbb{E} \nu_{i} \nu_{j}$ we will use the fact that one ball cannot be inside two different boxes simultaneously which means that

$$
\begin{equation*}
I\left(X_{l} \in B_{i}\right) I\left(X_{l} \in B_{j}\right)=0 \tag{23.1}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\mathbb{E} \nu_{i} \nu_{j} & =\mathbb{E}\left(\sum_{l=1}^{n} I\left(X_{l} \in B_{i}\right)\right)\left(\sum_{l^{\prime}=1}^{n} I\left(X_{l^{\prime}} \in B_{j}\right)\right)=\mathbb{E} \sum_{l, l^{\prime}} I\left(X_{l} \in B_{i}\right) I\left(X_{l^{\prime}} \in B_{j}\right) \\
& =\underbrace{\mathbb{E} \sum_{l=l^{\prime}} I\left(X_{l} \in B_{i}\right) I\left(X_{l^{\prime}} \in B_{j}\right)}_{\text {this equals to } 0 \text { by }(23.1)}+\mathbb{E} \sum_{l \neq l^{\prime}} I\left(X_{l} \in B_{i}\right) I\left(X_{l^{\prime}} \in B_{j}\right) \\
& =n(n-1) \mathbb{E} I\left(X_{l} \in B_{j}\right) \mathbb{E} I\left(X_{l^{\prime}} \in B_{j}\right)=n(n-1) p_{i} p_{j} .
\end{aligned}
$$

Therefore, the covariance above is equal to

$$
\frac{1}{n \sqrt{p_{i} p_{j}}}\left(n(n-1) p_{i} p_{j}-n^{2} p_{i} p_{j}\right)=-\sqrt{p_{i} p_{j}} .
$$

To summarize, we showed that the random variable

$$
\sum_{j=1}^{r} \frac{\left(\nu_{j}-n p_{j}\right)^{2}}{n p_{j}} \rightarrow \sum_{j=1}^{r} Z_{j}^{2}
$$

where random variables Z_{1}, \ldots, Z_{n} satisfy

$$
\mathbb{E} Z_{i}^{2}=1-p_{i} \text { and covariance } \mathbb{E} Z_{i} Z_{j}=-\sqrt{p_{i} p_{j}}
$$

To prove the Theorem it remains to show that this covariance structure of the sequence of Z_{i} 's will imply that their sum of squares has distribution χ_{r-1}^{2}. To show this we will find a different representation for $\sum Z_{i}^{2}$.

Let g_{1}, \cdots, g_{r} be i.i.d. standard normal sequence. Consider two vectors

$$
\vec{g}=\left(g_{1}, \ldots, g_{r}\right) \text { and } \vec{p}=\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{r}}\right)
$$

and consider a vector $\vec{g}-(\vec{g} \cdot \vec{p}) \vec{p}$, where $\vec{g} \cdot \vec{p}=g_{1} \sqrt{p_{1}}+\ldots+g_{r} \sqrt{p_{r}}$ is a scalar product of \vec{g} and \vec{p}. We will first prove that

$$
\begin{equation*}
\vec{g}-(\vec{g} \cdot \vec{p}) \vec{p} \text { has the same joint distribution as }\left(Z_{1}, \ldots, Z_{r}\right) . \tag{23.2}
\end{equation*}
$$

To show this let us consider two coordinates of the vector $\vec{g}-(\vec{g} \cdot \vec{p}) \vec{p}$:

$$
i^{\text {th }}: g_{i}-\sum_{l=1}^{r} g_{l} \sqrt{p_{l}} \sqrt{p_{i}} \quad \text { and } j^{\text {th }}: g_{j}-\sum_{l=1}^{r} g_{l} \sqrt{p_{l}} \sqrt{p_{j}}
$$

and compute their covariance:

$$
\begin{aligned}
& \mathbb{E}\left(g_{i}-\sum_{l=1}^{r} g_{l} \sqrt{p_{l}} \sqrt{p_{i}}\right)\left(g_{j}-\sum_{l=1}^{r} g_{l} \sqrt{p_{l}} \sqrt{p_{j}}\right) \\
& =-\sqrt{p_{i}} \sqrt{p_{j}}-\sqrt{p_{j}} \sqrt{p_{i}}+\sum_{l=1}^{n} p_{l} \sqrt{p_{i}} \sqrt{p_{j}}=-2 \sqrt{p_{i} p_{j}}+\sqrt{p_{i} p_{j}}=-\sqrt{p_{i} p_{j}} .
\end{aligned}
$$

Similarly, it is easy to compute that

$$
\mathbb{E}\left(g_{i}-\sum_{l=1}^{r} g_{l} \sqrt{p_{l}} \sqrt{p_{i}}\right)^{2}=1-p_{i} .
$$

This proves (23.2), which provides us with another way to formulate the convergence, namely, we have

$$
\sum_{j=1}^{r}\left(\frac{\nu_{j}-n p_{j}}{\sqrt{n p_{j}}}\right)^{2} \rightarrow \sum_{i=1}^{r}\left(i^{\text {th }} \text { coordinate }\right)^{2}
$$

where we consider the coorinates of the vector $\vec{g}-(\vec{g} \cdot \vec{p}) \vec{p}$. But this vector has a simple geometric interpretation. Since vector \vec{p} is a unit vector:

$$
|\vec{p}|^{2}=\sum_{l=1}^{r}\left(\sqrt{p_{i}}\right)^{2}=\sum_{l=1}^{r} p_{i}=1
$$

vector $\vec{V}_{1}=(\vec{p} \cdot \vec{g}) \vec{p}$ is the projection of vector \vec{g} on the line along \vec{p} and, therefore, vector $\vec{V}_{2}=\vec{g}-(\vec{p} \cdot \vec{g}) \vec{p}$ will be the projection of \vec{g} onto the plane orthogonal to \vec{p}, as shown in figures 23.2 and 23.3.

Let us consider a new orthonormal coordinate system with the last basis vector (last axis) equal to \vec{p}. In this new coordinate system vector \vec{g} will have coordinates

$$
\vec{g}^{\prime}=\left(g_{1}^{\prime}, \ldots, g_{r}^{\prime}\right)=\vec{g} V
$$

Figure 23.2: Projections of \vec{g}.

Figure 23.3: Rotation of the coordinate system.
obtained from \vec{g} by orthogonal transformation V that maps canonical basis into this new basis. But we proved a few lectures ago that in that case $g_{1}^{\prime}, \ldots, g_{r}^{\prime}$ will also be i.i.d. standard normal. From figure 23.3 it is obvious that vector $\vec{V}_{2}=\vec{g}-(\vec{p} \cdot \vec{g}) \vec{p}$ in the new coordinate system has coordinates

$$
\left(g_{1}^{\prime}, \ldots, g_{r-1}^{\prime}, 0\right)
$$

and, therefore,

$$
\sum_{i=1}^{r}\left(i^{t h} \text { coordinate }\right)^{2}=\left(g_{1}^{\prime}\right)^{2}+\ldots+\left(g_{r-1}^{\prime}\right)^{2}
$$

But this last sum, by definition, has χ_{r-1}^{2} distribution since $g_{1}^{\prime}, \cdots, g_{r-1}^{\prime}$ are i.i.d. standard normal. This finishes the proof of Theorem.

