
Lecture 23

23.1 Pearson’s theorem.

Today we will prove one result from probability that will be useful in several statistical
tests.

Let us consider r boxes B1, . . . , Br as in figure 23.1

...B1 B2 Br

Figure 23.1:

Assume that we throw n balls X1, . . . , Xn into these boxes randomly independently
of each other with probabilities

� (Xi ∈ B1) = p1, . . . , � (Xi ∈ Br) = pr,

where probabilities add up to one p1 + . . . + pr = 1. Let νj be a number of balls in
the jth box:

νj = #{balls X1, . . . , Xn in the box Bj} =

n∑

l=1

I(Xl ∈ Bj).

On average, the number of balls in the jth box will be npj, so random variable νj

should be close to npj. One can also use Central Limit Theorem to describe how close
νj is to npj. The next result tells us how we can describe in some sense the closeness
of νj to npj simultaneously for all j ≤ r. The main difficulty in this Thorem comes
from the fact that random variables νj for j ≤ r are not independent, for example,
because the total number of balls is equal to n,

ν1 + . . . + νr = n,
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i.e. if we know these numbers in n−1 boxes we will automatically know their number
in the last box.

Theorem. We have that the random variable

r∑

j=1

(νj − npj)
2

npj

→ χ2
r−1

converges in distribution to χ2
r−1 distribution with (r − 1) degrees of freedom.

Proof. Let us fix a box Bj. The random variables

I(X1 ∈ Bj), . . . , I(Xn ∈ Bj)

that indicate whether each observation Xi is in the box Bj or not are i.i.d. with
Bernoully distribution B(pj) with probability of success

�
I(X1 ∈ Bj) = � (X1 ∈ Bj) = pj

and variance
Var(I(X1 ∈ Bj)) = pj(1 − pj).

Therefore, by Central Limit Theorem we know that the random variable

νj − npj
√

npj(1 − pj)
=

∑n
l=1 I(Xl ∈ Bj) − npj

√

npj(1 − pj)

=

∑n
l=1 I(Xl ∈ Bj) − n

�

√
nVar

→ N(0, 1)

converges to standard normal distribution. Therefore, the random variable

νj − npj√
npj

→
√

1 − pjN(0, 1) = N(0, 1 − pj)

converges to normal distribution with variance 1− pj. Let us be a little informal and
simply say that

νj − npj√
npj

→ Zj

where random variable Zj ∼ N(0, 1 − pj).
We know that each Zj has distribution N(0, 1 − pj) but, unfortunately, this does

not tell us what the distribution of the sum
∑

Z2
j will be, because as we mentioned

above r.v.s νj are not independent and their correlation structure will play an im-
portant role. To compute the covariance between Zi and Zj let us first compute the
covariance between

νi − npi√
npi

and
νj − npj√

npj
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which is equal to

� νi − npj√
npi

νj − npj√
npj

=
1

n
√

pipj
(

�
νiνj −

�
νinpj −

�
νjnpi + n2pipj)

=
1

n
√

pipj
(

�
νiνj − npinpj − npjnpi + n2pipj) =

1

n
√

pipj
(

�
νiνj − n2pipj).

To compute
�

νiνj we will use the fact that one ball cannot be inside two different
boxes simultaneously which means that

I(Xl ∈ Bi)I(Xl ∈ Bj) = 0. (23.1)

Therefore,

�
νiνj =

�
( n∑

l=1

I(Xl ∈ Bi)
)( n∑

l′=1

I(Xl′ ∈ Bj)
)

=
� ∑

l,l′

I(Xl ∈ Bi)I(Xl′ ∈ Bj)

=
� ∑

l=l′

I(Xl ∈ Bi)I(Xl′ ∈ Bj)

︸ ︷︷ ︸

this equals to 0 by (23.1)

+
� ∑

l 6=l′

I(Xl ∈ Bi)I(Xl′ ∈ Bj)

= n(n − 1)
�

I(Xl ∈ Bj)
�

I(Xl′ ∈ Bj) = n(n − 1)pipj.

Therefore, the covariance above is equal to

1

n
√

pipj

(

n(n − 1)pipj − n2pipj

)

= −√
pipj.

To summarize, we showed that the random variable

r∑

j=1

(νj − npj)
2

npj

→
r∑

j=1

Z2
j .

where random variables Z1, . . . , Zn satisfy

�
Z2

i = 1 − pi and covariance
�

ZiZj = −√
pipj.

To prove the Theorem it remains to show that this covariance structure of the sequence
of Zi’s will imply that their sum of squares has distribution χ2

r−1. To show this we
will find a different representation for

∑
Z2

i .
Let g1, · · · , gr be i.i.d. standard normal sequence. Consider two vectors

~g = (g1, . . . , gr) and ~p = (
√

p1, . . . ,
√

pr)
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and consider a vector ~g− (~g ·~p)~p, where ~g ·~p = g1
√

p1 + . . .+gr
√

pr is a scalar product
of ~g and ~p. We will first prove that

~g − (~g · ~p)~p has the same joint distribution as (Z1, . . . , Zr). (23.2)

To show this let us consider two coordinates of the vector ~g − (~g · ~p)~p :

ith : gi −
r∑

l=1

gl
√

pl
√

pi and jth : gj −
r∑

l=1

gl
√

pl
√

pj

and compute their covariance:

�
(

gi −
r∑

l=1

gl
√

pl
√

pi

)(

gj −
r∑

l=1

gl
√

pl
√

pj

)

= −√
pi
√

pj −
√

pj
√

pi +
n∑

l=1

pl
√

pi
√

pj = −2
√

pipj +
√

pipj = −√
pipj.

Similarly, it is easy to compute that

�
(

gi −
r∑

l=1

gl
√

pl
√

pi

)2

= 1 − pi.

This proves (23.2), which provides us with another way to formulate the convergence,
namely, we have

r∑

j=1

(νj − npj√
npj

)2

→
r∑

i=1

(ith coordinate)2

where we consider the coorinates of the vector ~g−(~g ·~p)~p. But this vector has a simple
geometric interpretation. Since vector ~p is a unit vector:

|~p|2 =

r∑

l=1

(
√

pi)
2 =

r∑

l=1

pi = 1,

vector ~V1 = (~p · ~g)~p is the projection of vector ~g on the line along ~p and, therefore,

vector ~V2 = ~g − (~p · ~g)~p will be the projection of ~g onto the plane orthogonal to ~p, as
shown in figures 23.2 and 23.3.

Let us consider a new orthonormal coordinate system with the last basis vector
(last axis) equal to ~p. In this new coordinate system vector ~g will have coordinates

~g′ = (g′
1, . . . , g

′
r) = ~gV
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Figure 23.2: Projections of ~g.
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Figure 23.3: Rotation of the coordinate system.

obtained from ~g by orthogonal transformation V that maps canonical basis into this
new basis. But we proved a few lectures ago that in that case g ′

1, . . . , g
′
r will also be

i.i.d. standard normal. From figure 23.3 it is obvious that vector ~V2 = ~g − (~p · ~g)~p in
the new coordinate system has coordinates

(g′
1, . . . , g

′
r−1, 0)

and, therefore,
r∑

i=1

(ith coordinate)2 = (g′
1)

2 + . . . + (g′
r−1)

2.

But this last sum, by definition, has χ2
r−1 distribution since g′

1, · · · , g′
r−1 are i.i.d.

standard normal. This finishes the proof of Theorem.


