
Lecture 22

22.1 One sided hypotheses continued.

It remains to prove the second part of the Theorem from last lecture. Namely, we
have to show that for any δ ∈ Kα

Π(δ∗, θ) ≥ Π(δ, θ) for θ > θ0.

Let us take θ > θ0 and consider two simple hypotheses

h1 : � = � θ0 and h2 : � = � θ.

Let us find the most powerful test with error of type one equal to α. We know that
if we can find a threshold b such that

� θ0

(f(X|θ0)

f(X|θ) < b
)

= α

then the following test will be the most powerful test with error of type 1 equal to α:

δθ =

{

h1 : f(X|θ0)
f(X|θ)

≥ b

h2 : f(X|θ0)
f(X|θ)

< b

But the monotone likelihood ratio implies that

f(X|θ0)

f(X|θ) < b ⇔ f(X|θ)
f(X|θ0)

>
1

b
⇔ V (T, θ, θ0) >

1

b

and, since now θ > θ0, the function V (T, θ, θ0) is strictly increasing in T. Therefore,
we can solve this inequality for T and get that T > cb for some cb.

This means that the error of type 1 for the test δθ can be written as

� θ0

(f(X|θ0)

f(X|θ) < b
)

= � θ0(T > cb).
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But we chose this error to be equal to α = � θ0(T > c) which means that cb should
be such that

� θ0(T > cb) = � θ0(T > c) ⇒ c = cb.

Therefore,we proved that the test

δθ =

{
h1 : T ≤ c
h2 : T > c

is the most powerful test with error of type 1 equal to α.
But this test δθ is exactly the same as δ∗ and it does not depend on θ. This means

that deciding between two simple hypotheses θ0 vs. θ one should always use the same
most powerful decision rule δ∗. But this means that δ∗ is uniformly most powerful test
- what we wanted to prove. Notice that MLR played a key role here because thanks
to MLR the decision rule δθ was independent of θ. If δθ was different for different θ
this would mean that there is no UMP for composite hypotheses because it would be
advantageous to use different decision rules for different θ.

Example. Let us consider a family of normal distributions N(µ, 1) with unknown
mean µ as a parameter. Given some µ0 consider one sided hypotheses

H1 : µ ≤ µ0 and H2 : µ > µ0.

As we have shown before the normal family N(µ, 1) has monotone likelihood ratio
with T (X) =

∑n
i=1 Xi. Therefore, the uniformly most powerful test with level of

significance α will be as follows:

δ∗ =

{
H1 :

∑n
i=1 Xi ≤ c

H2 :
∑n

i=1 Xi > c.

The threshold c is determined by

α = � µ0(T > c) = � µ0(
∑

Xi > c).

If the sample comes from N(µ0, 1) then T has distribution N(nµ0, n) and

Y =
1√
n

n∑

i=1

(Xi − µ0) ∼ N(0, 1)

is standard normal. Therefore,

α = � µ0(
n∑

i=1

Xi > c) = � µ0

(

Y =
1√
n

n∑

i=1

(Xi − µ0) >
c − nµ0√

n

)

.
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Therefore, if using the table of standard normal distribution we find cα such that
� (Y > cα) = α then

c − nµ0√
n

= cα or c = µ0n +
√

ncα.

Example. Let us now consider a family of normal distributions N(0, σ2) with
variance σ2 as unknown parameter. Given σ2

0 we consider one sided hypotheses

H1 : σ2 ≤ σ2
0 and H2 : σ2 > σ2

0.

Let us first check if MLR holds in this case. The likelihood ratio is

f(X|σ2
2)

f(X|σ2
1)

=
1

(
√

2πσ2)n
e
− 1

2σ2
2

Pn
i=1 X2

i

/ 1

(
√

2πσ1)n
e
− 1

2σ2
1

Pn
i=1 X2

i

=
(σ1

σ2

)n

e

(

1

2σ2
1
− 1

2σ2
2

)
P

X2
i

=
(σ1

σ2

)n

e

(

1

2σ2
1
− 1

2σ2
2

)

T
,

where T =
∑n

i=1 X2
i . When σ2

2 > σ2
1 the likelihood ratio is increasing in T and,

therefore, MLR holds. By the above Theorem, the UMP test exists and is given by

δ∗ =

{
H1 : T =

∑n
i=1 X2

i ≤ c
H2 : T =

∑n
i=1 X2

i > c

where the threshold c is determined by

α = � σ2
0
(

n∑

i=1

X2
i > c) = � σ2

0

( n∑

i=1

(Xi

σ0

)2

>
c

σ2
0

)

.

When Xi ∼ N(o, σ2
0), Xi/σ0 ∼ N(0, 1) are standard normal and, therefore,

n∑

i=1

(Xi

σ0

)2

∼ χ2
n

has χ2
n distribution with n degrees of freedom. If we find cα such that χ2

n(cα,∞) = α
then c = cασ2

0.


