
Lecture 21

21.1 Monotone likelihood ratio.

In the last lecture we gave the definition of the UMP test and mentioned that under
certain conditions the UMP test exists. In this section we will describe a property
called monotone likelihood ratio which will be used in the next section to find the
UMP test for one sided hypotheses.

Suppose the parameter set Θ ⊆ �
is a subset of a real line and that probability

distributions � θ have p.d.f. or p.f. f(x|θ). Given a sample X = (X1, . . . , Xn), the
likelihood function (or joint p.d.f.) is given by

f(X|θ) =
n∏

i=1

f(Xi|θ).

Definition: The set of distributions { � θ, θ ∈ Θ} has Monotone Likelihood Ratio
(MLR) if we can represent the likelihood ratio as

f(X|θ1)

f(X|θ2)
= V (T (X), θ1, θ2)

and for θ1 > θ2 the function V (T, θ1, θ2) is strictly increasing in T .
Example. Consider a family of Bernoulli distributions {B(p) : p ∈ [0, 1]}, in

which case the p.f. is qiven by

f(x|p) = px(1 − p)1−x

and for X = (X1, . . . , Xn) the likelihood function is

f(X|p) = p
P

Xi(1 − p)n−
P

Xi .

We can write the likelihood ratio as folows:

f(X|p1)

f(X|p2)
=

p
P

Xi

1 (1 − p1)
n−

P

Xi

p
P

Xi

2 (1 − p2)n−
P

Xi

=
(1 − p1

1 − p2

)n(p1(1 − p2)

p2(1 − p1)

)P

Xi

.
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For p1 > p2 we have
p1(1 − p2)

p2(1 − p1)
> 1

and, therefore, the likelihood ratio is strictly increasing in T =
∑n

i=1 Xi.
Example. Consider a family of normal distributions {N(µ, 1) : µ ∈ � } with

variance σ2 = 1 and unknown mean µ as a parameter. Then the p.d.f. is

f(x|µ) =
1√
2π

e−
(x−µ)2

2

and the likelihood

f(X|µ) =
1

(
√

2π)n
e−

1
2

Pn
i=1(Xi−µ)2 .

Then the likelihood ratio can be written as

f(X|µ1)

f(X|µ2)
= e−

1
2

Pn
i=1(Xi−µ1)2+ 1

2

Pn
i=1(Xi−µ2)2 = e(µ1−µ2)

P

Xi−n
2
(µ2

1−µ2
2).

For µ1 > µ2 the likelihood ratio is increasing in T (X) =
∑n

i=1 Xi and MLR holds.

21.2 One sided hypotheses.

Consider θ0 ∈ Θ ⊆ �
and consider the following hypotheses:

H1 : θ ≤ θ0 and H2 : θ > θ0

which are called one sided hypotheses, because we hypothesize that the unknown
parameter θ is on one side or the other side of some threshold θ0. We will show next
that if MLR holds then for these hypotheses there exists a Uniformly Most Powerful
test with level of significance α, i.e. in class Kα.

θ0

0
θ

H2H1

Figure 21.1: One sided hypotheses.
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Theorem. Suppose that we have Monotone Likelihood Ratio with T = T (X) and
we consider one-sided hypotheses as above. For any level of significance α ∈ [0, 1], we
can find c ∈ �

and p ∈ [0, 1] such that

� θ0(T (X) > c) + (1 − p) � θ0(T (X) = c) = α.

Then the following test δ∗ will be the Uniformly Most Powerful test with level of
significance α:

δ∗ =







H1 : T < c
H2 : T > c
H1 or H2 : T = c

where in the last case of T = c we randomly pick H1 with probability p and H2 with
probability 1 − p.

Proof. We have to prove two things about this test δ∗:

1. δ∗ ∈ Kα, i.e. δ∗ has level of significance α,

2. for any δ ∈ Kα, Π(δ∗, θ) ≥ Π(δ, θ) for θ > θ0, i.e. δ∗ is more powerful on the
second hypothesis that any other test from the class Kα.

To simplify our considerations below let us assume that we don’t need to random-
ize in δ∗, i.e. we can take p = 1 and we have

� θ0(T (X) > c) = α

and the test δ∗ is given by

δ∗ =

{
H1 : T ≤ c
H2 : T > c.

Proof of 1. To prove that δ∗ ∈ Kα we need to show that

Π(δ∗, θ) = � θ(T > c) ≤ α for θ ≤ θ0.

Let us for a second forget about composite hypotheses and for θ < θ0 consider two
simple hypotheses:

h1 : � = � θ and h2 : � = � θ0 .

For these simple hypotheses let us find the most powerful test with error of type 1
equal to

α1 := � θ(T > c).

We know that if we can find a threshold b such that

� θ

( f(X|θ)
f(X|θ0)

< b
)

= α1
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then the following test will be the most powerful test with error of type one equal to
α1:

δθ =

{

h1 : f(X|θ)
f(X|θ0)

≥ b

h2 : f(X|θ)
f(X|θ0)

< b

This corresponds to the situation when we do not have to randomize. But the mono-
tone likelihood ratio implies that

f(X|θ)
f(X|θ0)

< b ⇔ f(X|θ0)

f(X|θ) >
1

b
⇔ V (T, θ0, θ) >

1

b

and, since θ0 > θ, this last function V (T, θ0, θ) is strictly increasing in T. Therefore,
we can solve this inequality for T (see figure 21.2) and get that T > cb for some cb.

θ , θ) 0V(T, 

0

1/b

Cb
T

Figure 21.2: Solving for T .

This means that the error of type 1 for the test δθ can be written as

α1 = � θ

( f(X|θ)
f(X|θ0)

< b
)

= � θ(T > cb).

But we chose this error to be equal to α1 = � θ(T > c) which means that cb should
be such that

� θ(T > cb) = � θ(T > c) ⇒ c = cb.

To summarize, we proved that the test

δθ =

{
h1 : T ≤ c
h2 : T > c

is the most powerful test with error of type 1 equal to

α1 = Π(δ∗, θ) = � θ(T > c).
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Let us compare this test δθ with completely randomized test

δrand =

{
h1 : with probability 1 − α1

h2 : with probability α1,

which picks hypotheses completely randomly regardless of the data. The error of type
one for this test will be equal to

� θ(δ
rand = h2) = α1,

i.e. both tests δθ and δrand have the same error of type one equal to α1. But since δθ

is the most powerful test it has larger power than δrand. But the power of δθ is equal
to

� θ0(T > c) = α

and the power of δrand is equal to

α1 = � θ(T > c).

Therefore,
� θ(T > c) ≤ � θ0(T > c) = α

and we proved that for any θ ≤ θ0 the power function Π(δ∗, θ) ≤ α which this proves
1.


