
Lecture 19

In the last lecture we found the Bayes decision rule that minimizes the Bayes eror

α =

k∑

i=1

ξ(i)αi =

k∑

i=1

ξ(i) � i(δ 6= Hi).

Let us write down this decision rule in the case of two simple hypothesis H1, H2. For
simplicity of notations, given the sample X = (X1, . . . , Xn) we will denote the joint
p.d.f. by

fi(X) = fi(X1) . . . fi(Xn).

Then in the case of two simple hypotheses the Bayes decision rule that minimizes the
Bayes error

α = ξ(1) � 1(δ 6= H1) + ξ(2) � 2(δ 6= H2)

is given by

δ =







H1 : ξ(1)f1(X) > ξ(2)f2(X)
H2 : ξ(2)f2(X) > ξ(1)f1(X)
H1 or H2 : ξ(1)f1(X) = ξ(2)f2(X)

or, equivalently,

δ =







H1 : f1(X)
f2(X)

> ξ(2)
ξ(1)

H2 : f1(X)
f2(X)

< ξ(2)
ξ(1)

H1 or H2 : f1(X)
f2(X)

= ξ(2)
ξ(1)

(19.1)

(Here 1
0

= +∞, 0
1

= 0.) This kind of test if called likelihood ratio test since it is
expressed in terms of the ratio f1(X)/f2(X) of likelihood functions.

Example. Suppose we have only one observation X1 and two simple hypotheses
H1 : � = N(0, 1) and H2 : � = N(1, 1). Let us take an apriori distribution given by

ξ(1) =
1

2
and ξ(2) =

1

2
,
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i.e. both hypothesis have equal weight, and find a Bayes decision rule δ that minimizes

1

2
� 1(δ 6= H1) +

1

2
� 2(δ 6= H2)

Bayes decision rule is given by:

δ(X1) =







H1 : f1(X)
f2(X)

> 1

H2 : f1(X)
f2(X)

< 1

H1 or H2 : f1(X)
f2(X)

= 1

This decision rule has a very intuitive interpretation. If we look at the graphs of these
p.d.f.s (figure 19.1) the decision rule picks the first hypothesis when the first p.d.f. is
larger, to the left of point C, and otherwise picks the second hypothesis to the right
of point C.
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Figure 19.1: Bayes Decision Rule.

Example. Let us now consider a similar but more general example when we
have a sample X = (X1, · · · , Xn), two simple hypotheses H1 : � = N(0, 1) and
H2 : � = N(1, 1), and arbitrary apriori weights ξ(1), ξ(2). Then Bayes decision rule
is given by (19.1). The likelihood ratio can be simplified:

f1(X)

f2(X)
=

1

(
√

2π)n
e−

1
2

P

X2
i

/ 1

(
√

2π)n
e−

1
2

P

(Xi−1)2

= e
1
2

Pk
i=1((Xi−1)2−X2

i ) = e
n
2
−

P

Xi

Therefore, the decision rule picks the first hypothesis H1 when

e
n
2
−

P

Xi >
ξ(2)

ξ(1)
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or, equivalently,
∑

Xi <
n

2
− log

ξ(2)

ξ(1)
.

Similarly, we pick the second hypothesis H2 when

∑

Xi >
n

2
− log

ξ(2)

ξ(1)
.

In case of equality, we pick any one of H1, H2.

19.1 Most powerful test for two simple hypothe-

ses.

Now that we learned how to construct the decision rule that minimizes the Bayes
error we will turn to our next goal which we discussed in the last lecture, namely,
how to construct the decision rule with controlled error of type 1 that minimizes error
of type 2. Given α ∈ [0, 1] we consider the class of decision rules

Kα = {δ : � 1(δ 6= H1) ≤ α}

and will try to find δ ∈ Kα that makes the type 2 error α2 = � 2(δ 6= H2) as small as
possible.

Theorem: Assume that there exist a constant c, such that

� 1

(f1(X)

f2(X)
< c

)

= α.

Then the decision rule

δ =

{

H1 : f1(X)
f2(X)

≥ c

H2 : f1(X)
f2(X)

< c
(19.2)

is the most powerful in class Kα.
Proof. Take ξ(1) and ξ(2) such that

ξ(1) + ξ(2) = 1,
ξ(2)

ξ(1)
= c,

i.e.

ξ(1) =
1

1 + c
and ξ(2) =

c

1 + c
.
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Then the decision rule δ in (19.2) is the Bayes decision rule corresponding to weights
ξ(1) and ξ(2) which can be seen by comparing it with (19.1), only here we break the
tie in favor of H1. Therefore, this decision rule δ minimizes the Bayes error which
means that for any other decision rule δ′,

ξ(1) � 1(δ 6= H1) + ξ(2) � 2(δ 6= H2) ≤ ξ(1) � 1(δ
′ 6= H1) + ξ(2) � 2(δ

′ 6= H2). (19.3)

By assumption in the statement of the Theorem, we have

� 1(δ 6= H1) = � 1

(f1(X)

f2(X)
< c

)

= α,

which means that δ comes from the class Kα. If δ′ ∈ Kα then

� 1(δ
′ 6= H1) ≤ α

and equation (19.3) gives us that

ξ(1)α + ξ(2) � 2(δ 6= H2) ≤ ξ(1)α + ξ(2) � 2(δ
′ 6= H2)

and, therefore,
� 2(δ 6= H2) ≤ � 2(δ

′ 6= H2).

This exactly means that δ is more powerful than any other decision rule in class Kα.

Example. Suppose we have a sample X = (X1, . . . , Xn) and two simple hypothe-
ses H1 : � = N(0, 1) and H2 : � = N(1, 1). Let us find most powerful δ with the
error of type 1

α1 ≤ α = 0.05.

According to the above Theorem if we can find c such that

� 1

(f1(X)

f2(X)
< c

)

= α = 0.05

then we know how to find δ. Simplifying this equation gives

� 1

(∑

Xi >
n

2
− log c

)

= α = 0.05

or

� 1

( 1√
n

∑

Xi > c′ =
1√
n

(
n

2
− log c)

)

= α = 0.05.

But under the hypothesis H1 the sample comes from standard normal distribution
� 1 = N(0, 1) which implies that the random variable

Y =
1√
n

∑

Xi
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is standard normal. We can look up in the table that

� (Y > c′) = α = 0.05 ⇒ c′ = 1.64

and the most powerful test δ with level of significance α = 0.05 will look like this:

δ =

{

H1 : 1√
n

∑
Xi ≤ 1.64

H2 : 1√
n

∑
Xi > 1.64.

Now, what will the error of type 2 be for this test?

α2 = � 2(δ 6= H2) = � 2

( 1√
n

∑

Xi ≤ 1.64
)

= � 2

( 1√
n

n∑

i=1

(Xi − 1) ≤ 1.64 −√
n
)

.

The reason we subtracted 1 from each Xi is because under the second hypothesis X’s
have distribution N(1, 1) and random variable

Y =
1√
n

n∑

i=1

(Xi − 1)

will be standard normal. Therefore, the error of type 2 for this test will be equak to
the probability � (Y < 1.64 − √

n). For example, when the sample size n = 10 this
will be

α2 = � (Y < 1.64 −
√

10) = 0.087

from the table of normal distribution.


