Lecture 15

15.1 Orthogonal transformation of standard normal sample.

Consider $X_{1}, \ldots, X_{n} \sim N(0,1)$ i.d.d. standard normal r.v. and let V be an orthogonal transformation in \mathbb{R}^{n}. Consider a vector $\vec{Y}=\vec{X} V=\left(Y_{1}, \ldots, Y_{n}\right)$. What is the joint distribution of Y_{1}, \ldots, Y_{n} ? It is very easy to see that each Y_{i} has standard normal distribution and that they are uncorrelated. Let us check this. First of all, each

$$
Y_{i}=\sum_{k=1}^{n} v_{k i} X_{k}
$$

is a sum of independent normal r.v. and, therefore, Y_{i} has normal distribution with mean 0 and variance

$$
\operatorname{Var}\left(Y_{i}\right)=\sum_{k=1}^{n} v_{i k}^{2}=1,
$$

since the matrix V is orthogonal and the length of each column vector is 1 . So, each r.v. $Y_{i} \sim N(0,1)$. Any two r.v. Y_{i} and Y_{j} in this sequence are uncorrelated since

$$
\mathbb{E} Y_{i} Y_{j}=\sum_{k=1}^{n} v_{i k} v_{j k}=\vec{v}_{i}^{\prime} \vec{v}_{j}^{\prime}=0
$$

since the columns $\vec{v}_{i}^{\prime} \perp \vec{v}_{j}^{\prime}$ are orthogonal.
Does uncorrelated mean independent? In general no, but for normal it is true which means that we want to show that Y 's are i.i.d. standard normal, i.e. \vec{Y} has the same distribution as \vec{X}. Let us show this more accurately. Given a vector $t=\left(t_{1}, \ldots, t_{n}\right)$, the moment generating function of i.i.d. sequence X_{1}, \ldots, X_{n} can be computed as follows:

$$
\varphi(t)=\mathbb{E} e^{\vec{X} t^{T}}=\mathbb{E} e^{t_{1} X_{1}+\ldots+t_{n} X_{n}}=\prod_{i=1}^{n} \mathbb{E} e^{t_{i} X_{i}}
$$

$$
=\prod_{i=1}^{n} e^{\frac{t_{i}^{2}}{2}}=e^{\frac{1}{2} \sum_{i=1}^{n} t_{i}^{2}}=e^{\frac{1}{2}|t|^{2}}
$$

On the other hand, since $\vec{Y}=\vec{X} V$ and

$$
t_{1} Y_{1}+\ldots+t_{n} Y_{n}=\left(Y_{1}, \ldots, Y_{n}\right)\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right)=\left(Y_{1}, \ldots, Y_{n}\right) t^{T}=\vec{X} V t^{T}
$$

the moment generating function of Y_{1}, \ldots, Y_{n} is:

$$
\mathbb{E} e^{t_{1} Y_{1}+\cdots+t_{n} Y_{n}}=\mathbb{E} e^{\vec{X} V t^{T}}=\mathbb{E} e^{\vec{X}\left(t V^{T}\right)^{T}} .
$$

But this is the moment generating function of vector \vec{X} at the point $t V^{T}$, i.e. it is equal to

$$
\varphi\left(t V^{T}\right)=e^{\frac{1}{2}\left|t V^{T}\right|^{2}}=e^{\frac{1}{2}|t|^{2}}
$$

since the orthogonal transformation preserves the length of a vector $\left|t V^{T}\right|=|t|$. This means that the moment generating function of \vec{Y} is exactly the same as of \vec{X} which means that Y_{1}, \ldots, Y_{n} have the same joint distribution as X 's, i.e. i.i.d. standard normal.

Now we are ready to move to the main question we asked in the beginning of the previous lecture: What is the joint distribution of \bar{X} (sample mean) and $\bar{X}^{2}-(\bar{X})^{2}$ (sample variance)?

Theorem. If X_{1}, \ldots, X_{n} are i.d.d. standard normal, then sample mean \bar{X} and sample variance $\bar{X}^{2}-(\bar{X})^{2}$ are independent,

$$
\sqrt{n} \bar{X} \sim N(0,1) \text { and } n\left(\bar{X}^{2}-(\bar{X})^{2}\right) \sim \chi_{n-1}^{2}
$$

i.e. $\sqrt{n} \bar{X}$ has standard normal distribution and $n\left(\bar{X}^{2}-(\bar{X})^{2}\right)$ has χ_{n-1}^{2} distribution with $(n-1)$ degrees of freedom.

Proof. Consider a vector \vec{Y} given by transformation

$$
\vec{Y}=\left(Y_{1}, \ldots, Y_{n}\right)=\vec{X} V=\left(X_{1}, \ldots, X_{n}\right)\left(\begin{array}{cccc}
\frac{1}{\sqrt{n}} & \cdots & \cdots & \cdots \\
\vdots & \cdots & ? & \cdots \\
\frac{1}{\sqrt{n}} & \cdots & \cdots & \cdots
\end{array}\right)
$$

Here we chose a first column of the matrix V to be equal to

$$
\vec{v}_{1}=\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right) .
$$

Figure 15.1: Unit Vectors.

We let the remaining columns be any vectors such that the matrix V defines orthogonal transformation. This can be done since the length of the first column vector $\left|\vec{v}_{1}\right|=1$, and we can simply choose the columns $\vec{v}_{2}, \ldots, \vec{v}_{n}$ to be any orthogonal basis in the hyperplane orthogonal to vector \vec{v}_{1}, as shown in figure 15.1.

Let us discuss some properties of this particular transformation. First of all, we showed above that Y_{1}, \ldots, Y_{n} are also i.i.d. standard normal. Because of the particular choice of the first column \vec{v}_{1} in V, the first r.v.

$$
Y_{1}=\frac{1}{\sqrt{n}} X_{1}+\ldots+\frac{1}{\sqrt{n}} X_{n}
$$

and, therefore,

$$
\begin{equation*}
\bar{X}=\frac{1}{\sqrt{n}} Y_{1} . \tag{15.1}
\end{equation*}
$$

Next, n times sample variance can be written as

$$
\begin{aligned}
n\left(\bar{X}^{2}-(\bar{X})^{2}\right) & =X_{1}^{2}+\ldots+X_{n}^{2}-\left(\frac{1}{\sqrt{n}}\left(X_{1}+\ldots+X_{n}\right)\right)^{2} \\
& =X_{1}^{2}+\ldots+X_{n}^{2}-Y_{1}^{2}
\end{aligned}
$$

But the orthogonal transformation V preserves the length

$$
Y_{1}^{2}+\cdots+Y_{n}^{2}=X_{1}^{2}+\cdots+X_{n}^{2}
$$

and, therefore, we get

$$
\begin{equation*}
n\left(\bar{X}^{2}-(\bar{X})^{2}\right)=Y_{1}^{2}+\ldots+Y_{n}^{2}-Y_{1}^{2}=Y_{2}^{2}+\ldots+Y_{n}^{2} \tag{15.2}
\end{equation*}
$$

Equations (15.1) and (15.2) show that sample mean and sample variance are independent since Y_{1} and $\left(Y_{2}, \ldots, Y_{n}\right)$ are independent, $\sqrt{n} \bar{X}=Y_{1}$ has standard normal distribution and $n\left(\bar{X}^{2}-(\bar{X})^{2}\right)$ has χ_{n-1}^{2} distribution since Y_{2}, \ldots, Y_{n} are independent
standard normal.

Consider now the case when

$$
X_{1}, \ldots, X_{n} \sim N\left(\alpha, \sigma^{2}\right)
$$

are i.i.d. normal random variables with mean α and variance σ^{2}. In this case, we know that

$$
Z_{1}=\frac{X_{1}-\alpha}{\sigma}, \cdots, Z_{n}=\frac{X_{n}-\alpha}{\sigma} \sim N(0,1)
$$

are independent standard normal. Theorem applied to Z_{1}, \ldots, Z_{n} gives that

$$
\sqrt{n} \bar{Z}=\sqrt{n} \frac{1}{n} \sum_{i=1}^{n} \frac{X_{i}-\alpha}{\sigma}=\frac{\sqrt{n}(\bar{X}-\alpha)}{\sigma} \sim N(0,1)
$$

and

$$
\begin{aligned}
n\left(\bar{Z}^{2}-(\bar{Z})^{2}\right) & =n\left(\frac{1}{n} \sum\left(\frac{X_{i}-\alpha}{\sigma}\right)^{2}-\left(\frac{1}{n} \sum \frac{X_{i}-\alpha}{\sigma}\right)^{2}\right) \\
& =n \frac{1}{n} \sum_{i=1}^{n}\left(\frac{X_{i}-\alpha}{\sigma}-\frac{1}{n} \sum \frac{X_{i}-\alpha}{\sigma}\right)^{2} \\
& =n \frac{\bar{X}^{2}-(\bar{X})^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} .
\end{aligned}
$$

