
Lecture 11

11.1 Sufficient statistic.

(Textbook, Section 6.7)
We consider an i.i.d. sample X1, . . . , Xn with distribution � θ from the family

{ � θ : θ ∈ Θ}. Imagine that there are two people A and B, and that
1. A observes the entire sample X1, . . . , Xn,
2. B observes only one number T = T (X1, . . . , Xn) which is a function of the

sample.
Clearly, A has more information about the distribution of the data and, in par-

ticular, about the unknown parameter θ. However, in some cases, for some choices of
function T (when T is so called sufficient statistics) B will have as much information
about θ as A has.

Definition. T = T (X1, · · · , Xn) is called sufficient statistics if

� θ(X1, . . . , Xn|T ) = � ′(X1, . . . , Xn|T ), (11.1)

i.e. the conditional distribution of the vector (X1, . . . , Xn) given T does not depend
on the parameter θ and is equal to � ′.

If this happens then we can say that T contains all information about the param-
eter θ of the disribution of the sample, since given T the distribution of the sample
is always the same no matter what θ is. Another way to think about this is: why the
second observer B has as much information about θ as observer A? Simply, given T ,
the second observer B can generate another sample X ′

1, . . . , X
′
n by drawing it accord-

ing to the distribution � ′(X1, · · · , Xn|T ). He can do this because it does not require
the knowledge of θ. But by (11.1) this new sample X ′

1, . . . , X
′
n will have the same

distribution as X1, . . . , Xn, so B will have at his/her disposal as much data as the
first observer A.

The next result tells us how to find sufficient statistics, if possible.
Theorem. (Neyman-Fisher factorization criterion.) T = T (X1, . . . , Xn) is suffi-

cient statistics if and only if the joint p.d.f. or p.f. of (X1, . . . , Xn) can be represented
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as

f(x1, . . . , xn|θ) ≡ f(x1|θ) . . . f(xn|θ) = u(x1, . . . , xn)v(T (x1, . . . , xn), θ) (11.2)

for some function u and v. (u does not depend on the parameter θ and v depends on
the data only through T .)

Proof. We will only consider a simpler case when the distribution of the sample
is discrete.

1. First let us assume that T = T (X1, . . . , Xn) is sufficient statistics. Since the
distribution is discrete, we have,

f(x1, . . . , xn|θ) = � θ(X1 = x1, . . . , Xn = xn),

i.e. the joint p.f. is just the probability that the sample takes values x1, . . . , xn. If
X1 = x1, . . . , Xn = xn then T = T (x1, . . . , xn) and, therefore,

� θ(X1 = x1, . . . , Xn = xn) = � θ(X1 = x1, . . . , Xn = xn, T = T (x1, . . . , xn)).

We can write this last probability via a conditional probability

� θ(X1 = x1, . . . , Xn = xn, T = T (x1, . . . , xn))

= � θ(X1 = x1, . . . , Xn = xn|T = T (x1, . . . , xn)) � θ(T = T (x1, . . . , xn)).

All together we get,

f(x1, . . . , xn|θ) = � θ(X1 = x1, . . . , Xn = xn|T = T (x1, . . . , xn)) � θ(T = T (x1, . . . , xn)).

Since T is sufficient, by definition, this means that the first conditional probability

� θ(X1 = x1, . . . , Xn = xn|T = T (x1, . . . , xn)) = u(x1, . . . , xn)

for some function u independent of θ, since this conditional probability does not
depend on θ. Also,

� θ(T = T (x1, . . . , xn)) = v(T (x1, . . . , xn), θ)

depends on x1, . . . , xn only through T (x1, . . . , xn). So, we proved that if T is sufficient
then (11.2) holds.

2. Let us now show the opposite, that if (11.2) holds then T is sufficient. By
definition of conditional probability, we can write,

� θ(X1 = x1, . . . , Xn = xn|T (X1, . . . , Xn) = t)

=
� θ(X1 = x1, . . . , Xn = xn, T (X1, . . . , Xn) = t)

� θ(T (X1, . . . , Xn) = t)
. (11.3)
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First of all, both side are equal to zero unless

t = T (x1, . . . , xn), (11.4)

because when X1 = x1, . . . , Xn = xn, T (X1, . . . , Xn) must be equal to T (x1, . . . , xn).
For this t, the numerator in (11.3)

� θ(X1 = x1, . . . , Xn = xn, T (X1, . . . , Xn) = t) = � θ(X1 = x1, . . . , Xn = xn),

since we just drop the condition that holds anyway. By (11.2), this can be written as

u(x1, . . . , xn)v(T (x1, . . . , xn), θ) = u(x1, . . . , xn)v(t, θ).

As for the denominator in (11.3), let us consider the set

A(t) = {(x1, . . . , xn) : T (x1, . . . , xn) = t}

of all possible combinations of the x’s such that T (x1, . . . , xn) = t. Then, obviously,
the denominator in (11.3) can be written as,

� θ(T (X1, . . . , Xn) = t) = � θ((X1, . . . , Xn) ∈ A(t))

=
∑

(x1,···,xn)∈A(t)

� θ(X1 = x1, . . . , Xn = xn) =
∑

(x1,···,xn)∈A(t)

u(x1, . . . , xn)v(t, θ)

where in the last step we used (11.2) and (11.4). Therefore, (11.3) can be written as

u(x1, . . . , xn)v(t, θ)
∑

A(t) u(x1, . . . , xn)v(t, θ)
=

u(x1, . . . , xn)
∑

A(t) u(x1, . . . , xn)

and since this does not depend on θ anymore, it proves that T is sufficient.

Example. Bernoulli Distribution B(p) has p.f. f(x|p) = px(1 − p)1−x for x ∈
{0, 1}. The joint p.f. is

f(x1, · · · , xn|p) = p
P

xi(1 − p)n−
P

xi = v(
∑

Xi, p),

i.e. it depends on x’s only through the sum
∑

xi. Therefore, by Neyman-Fisher
factorization criterion T =

∑
Xi is a sufficient statistic. Here we set

v(T, p) = pT (1 − p)n−T and u(x1, . . . , xn) = 1.


