Lecture 11

11.1 Sufficient statistic.

(Textbook, Section 6.7)
We consider an i.i.d. sample X_{1}, \ldots, X_{n} with distribution \mathbb{P}_{θ} from the family $\left\{\mathbb{P}_{\theta}: \theta \in \Theta\right\}$. Imagine that there are two people A and B, and that

1. A observes the entire sample X_{1}, \ldots, X_{n},
2. B observes only one number $T=T\left(X_{1}, \ldots, X_{n}\right)$ which is a function of the sample.

Clearly, A has more information about the distribution of the data and, in particular, about the unknown parameter θ. However, in some cases, for some choices of function T (when T is so called sufficient statistics) B will have as much information about θ as A has.

Definition. $T=T\left(X_{1}, \cdots, X_{n}\right)$ is called sufficient statistics if

$$
\begin{equation*}
\mathbb{P}_{\theta}\left(X_{1}, \ldots, X_{n} \mid T\right)=\mathbb{P}^{\prime}\left(X_{1}, \ldots, X_{n} \mid T\right), \tag{11.1}
\end{equation*}
$$

i.e. the conditional distribution of the vector $\left(X_{1}, \ldots, X_{n}\right)$ given T does not depend on the parameter θ and is equal to \mathbb{P}^{\prime}.

If this happens then we can say that T contains all information about the parameter θ of the disribution of the sample, since given T the distribution of the sample is always the same no matter what θ is. Another way to think about this is: why the second observer B has as much information about θ as observer A? Simply, given T, the second observer B can generate another sample $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ by drawing it according to the distribution $\mathbb{P}^{\prime}\left(X_{1}, \cdots, X_{n} \mid T\right)$. He can do this because it does not require the knowledge of θ. But by (11.1) this new sample $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ will have the same distribution as X_{1}, \ldots, X_{n}, so B will have at his/her disposal as much data as the first observer A.

The next result tells us how to find sufficient statistics, if possible.
Theorem. (Neyman-Fisher factorization criterion.) $T=T\left(X_{1}, \ldots, X_{n}\right)$ is sufficient statistics if and only if the joint p.d.f. or p.f. of $\left(X_{1}, \ldots, X_{n}\right)$ can be represented
as

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n} \mid \theta\right) \equiv f\left(x_{1} \mid \theta\right) \ldots f\left(x_{n} \mid \theta\right)=u\left(x_{1}, \ldots, x_{n}\right) v\left(T\left(x_{1}, \ldots, x_{n}\right), \theta\right) \tag{11.2}
\end{equation*}
$$

for some function u and v. (u does not depend on the parameter θ and v depends on the data only through T.)

Proof. We will only consider a simpler case when the distribution of the sample is discrete.

1. First let us assume that $T=T\left(X_{1}, \ldots, X_{n}\right)$ is sufficient statistics. Since the distribution is discrete, we have,

$$
f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

i.e. the joint p.f. is just the probability that the sample takes values x_{1}, \ldots, x_{n}. If $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$ then $T=T\left(x_{1}, \ldots, x_{n}\right)$ and, therefore,

$$
\mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}, T=T\left(x_{1}, \ldots, x_{n}\right)\right)
$$

We can write this last probability via a conditional probability

$$
\begin{aligned}
& \mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}, T=T\left(x_{1}, \ldots, x_{n}\right)\right) \\
& =\mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T=T\left(x_{1}, \ldots, x_{n}\right)\right) \mathbb{P}_{\theta}\left(T=T\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

All together we get,

$$
f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T=T\left(x_{1}, \ldots, x_{n}\right)\right) \mathbb{P}_{\theta}\left(T=T\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Since T is sufficient, by definition, this means that the first conditional probability

$$
\mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T=T\left(x_{1}, \ldots, x_{n}\right)\right)=u\left(x_{1}, \ldots, x_{n}\right)
$$

for some function u independent of θ, since this conditional probability does not depend on θ. Also,

$$
\mathbb{P}_{\theta}\left(T=T\left(x_{1}, \ldots, x_{n}\right)\right)=v\left(T\left(x_{1}, \ldots, x_{n}\right), \theta\right)
$$

depends on x_{1}, \ldots, x_{n} only through $T\left(x_{1}, \ldots, x_{n}\right)$. So, we proved that if T is sufficient then (11.2) holds.
2. Let us now show the opposite, that if (11.2) holds then T is sufficient. By definition of conditional probability, we can write,

$$
\begin{align*}
& \mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T\left(X_{1}, \ldots, X_{n}\right)=t\right) \\
& =\frac{\mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}, T\left(X_{1}, \ldots, X_{n}\right)=t\right)}{\mathbb{P}_{\theta}\left(T\left(X_{1}, \ldots, X_{n}\right)=t\right)} \tag{11.3}
\end{align*}
$$

First of all, both side are equal to zero unless

$$
\begin{equation*}
t=T\left(x_{1}, \ldots, x_{n}\right) \tag{11.4}
\end{equation*}
$$

because when $X_{1}=x_{1}, \ldots, X_{n}=x_{n}, T\left(X_{1}, \ldots, X_{n}\right)$ must be equal to $T\left(x_{1}, \ldots, x_{n}\right)$. For this t, the numerator in (11.3)

$$
\mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}, T\left(X_{1}, \ldots, X_{n}\right)=t\right)=\mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right),
$$

since we just drop the condition that holds anyway. By (11.2), this can be written as

$$
u\left(x_{1}, \ldots, x_{n}\right) v\left(T\left(x_{1}, \ldots, x_{n}\right), \theta\right)=u\left(x_{1}, \ldots, x_{n}\right) v(t, \theta)
$$

As for the denominator in (11.3), let us consider the set

$$
A(t)=\left\{\left(x_{1}, \ldots, x_{n}\right): T\left(x_{1}, \ldots, x_{n}\right)=t\right\}
$$

of all possible combinations of the x 's such that $T\left(x_{1}, \ldots, x_{n}\right)=t$. Then, obviously, the denominator in (11.3) can be written as,

$$
\begin{aligned}
& \mathbb{P}_{\theta}\left(T\left(X_{1}, \ldots, X_{n}\right)=t\right)=\mathbb{P}_{\theta}\left(\left(X_{1}, \ldots, X_{n}\right) \in A(t)\right) \\
& =\sum_{\left(x_{1}, \cdots, x_{n}\right) \in A(t)} \mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\sum_{\left(x_{1}, \cdots, x_{n}\right) \in A(t)} u\left(x_{1}, \ldots, x_{n}\right) v(t, \theta)
\end{aligned}
$$

where in the last step we used (11.2) and (11.4). Therefore, (11.3) can be written as

$$
\frac{u\left(x_{1}, \ldots, x_{n}\right) v(t, \theta)}{\sum_{A(t)} u\left(x_{1}, \ldots, x_{n}\right) v(t, \theta)}=\frac{u\left(x_{1}, \ldots, x_{n}\right)}{\sum_{A(t)} u\left(x_{1}, \ldots, x_{n}\right)}
$$

and since this does not depend on θ anymore, it proves that T is sufficient.
Example. Bernoulli Distribution $B(p)$ has p.f. $f(x \mid p)=p^{x}(1-p)^{1-x}$ for $x \in$ $\{0,1\}$. The joint p.f. is

$$
f\left(x_{1}, \cdots, x_{n} \mid p\right)=p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}=v\left(\sum X_{i}, p\right)
$$

i.e. it depends on x 's only through the sum $\sum x_{i}$. Therefore, by Neyman-Fisher factorization criterion $T=\sum X_{i}$ is a sufficient statistic. Here we set

$$
v(T, p)=p^{T}(1-p)^{n-T} \text { and } u\left(x_{1}, \ldots, x_{n}\right)=1
$$

