
Lecture 10

10.1 Bayes estimators.

(Textbook, Sections 6.3 and 6.4)
Once we find the posterior distribution or its p.d.f. or p.f. ξ(θ|X1, . . . , Xn) we

turn to constructing the estimate θ̂ of the unknown parameter θ0. The most common
way to do this is simply take the mean of the posterior distribution

θ̂ = θ̂(X1, . . . , Xn) =
�

(θ|X1, . . . , Xn).

This estimate θ̂ is called the Bayes estimator. Note that θ̂ depends on the sample
X1, . . . , Xn since, by definition, the posterior distribution depends on the sample. The
obvious motivation for this choice of θ̂ is that it is simply the average of the parameter
with respect to posterior distribution that in some sense captures the information
contained in the data and our prior intuition about the parameter. Besides this
obvious motivation one sometimes gives the following motivation. Let us define the
estimator as the parameter a that minimizes

�
((θ − a)2|X1, . . . , Xn),

i.e. the posterior average squared deviation of θ from a is as small as possible. To
find this a we find the critical point:

∂

∂a

�
((θ − a)2|X1, . . . , Xn) = 2

�
(θ|X1, . . . , Xn) − 2a = 0

and it turns out to be the mean

a = θ̂ =
�

(θ|X1, . . . , Xn).

Let us summarize the construction of Bayes estimator.

1. Choose prior distribution of θ, ξ(θ).

2. Compute posterior distribution ξ(θ|X1, . . . , Xn).

3. Find the expectation of the posterior θ̂ =
�

(θ|X1, . . . , Xn).
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10.2 Conjugate prior distributions.

Often for many popular families of distributions the prior distribution ξ(θ) is chosen
so that it is easy to compute the posterior distribution. This is done by choosing ξ(θ)
that resembles the likelihood function f(X1, . . . , Xn|θ). We will explain this on the
particular examples.

Example. Suppose that the sample comes from Bernoulli distribution B(p) with
p.f.

f(x|p) = px(1 − p)1−x for x = 0, 1

and likelihood function

f(X1, · · · , Xn|p) = p
P

Xi(1 − p)n−
P

Xi .

Then the posterior distribution will have the form:

ξ(p|X1, . . . , Xn) =
f(X1, . . . , Xn|p)ξ(p)

g(X1, . . . , Xn)
=

p
P

Xi(1 − p)n−P

Xiξ(p)

g(X1, . . . , Xn)
.

Notice that the likelihood function

p
P

Xi(1 − p)n−
P

Xi

resembles the density of Beta distribution. Therefore, if we let the prior distribution
be a Beta distribution B(α, β) with some parameters α, β > 0:

ξ(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1 − p)β−1

then the posterior distribution will be

ξ(p|X1, . . . , Xn) =
1

g(X1, . . . , Xn)

Γ(α + β)

Γ(α)Γ(β)
p(α+

P

Xi)−1(1 − p)(β+n−P

Xi)−1

︸ ︷︷ ︸

resembles Beta distribution

.

We still have to compute g(X1, . . . , Xn) but this can be avoided if we notice that
ξ(p|X1, . . . , Xn) is supposed to be a p.d.f. and it looks like a Beta distribution with
parameter α +

∑
Xi and β + n − ∑

Xi. Therefore, g has no choice but to be such
that

ξ(p|X1, . . . , Xn) =
Γ(α + β + n)

Γ(α +
∑

Xi)Γ(β + n − ∑
Xi)

p(α+
P

Xi)−1(1 − p)(β+n−
P

Xi)−1

which is the p.d.f. of B
(

α+
∑

Xi, β+n−∑
Xi

)

. Since the mean of Beta distribution

B(α, β) is equal to α/(α + β), the Bayes estimator will be

p̂ =
�

(p|X1, . . . , Xn) =
α +

∑
Xi

α +
∑

Xi + β + n − ∑
Xi

=
α +

∑
Xi

α + β + n
.
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Let us notice that for large sample size, i.e. when n → +∞, we have

p̂ =
α +

∑
Xi

α + β + n
=

α
n

+ X̄
α
n

+ β
n

+ 1
≈ X̄.

This means that when we have a lot of data our prior intuition becomes irrelevant
and the Bayes estimator is approximated by the sample average X̄. On the other
hand, for n = 0

p̂ =
α

α + β

which is the mean of prior distribution B(α, β). If we have no data we simply follow
our intuitive guess.

Example. Suppose that the sample comes from the exponential distribution
E(α) with p.f.

f(x|α) = αe−αx for x ≥ 0

in which case the likelihood function is

f(X1, . . . , Xn) = αne−α
P

Xi .

The posterior distribution will have the form:

ξ(α|X1, . . . , Xn) =
1

g(X1, . . . , Xn)
αne−α

P

Xiξ(α).

Notice that the likelihood function resembles the p.d.f. of Gamma distribution and,
therefore, we will take prior to be a Gamma distribution Γ(u, v) with parameters u
and v, i.e.

ξ(α) =
vu

Γ(u)
αu−1e−vα.

Then, the posterior will be equal to

ξ(α|X1, . . . , Xn) =
1

g

vu

Γ(u)
α(u+n)−1e−α(

P

Xi+v)

which again looks like a Gamma distribution with parameters u + n and v +
∑

Xi.
Again, g(X1, . . . , Xn) will be such that

ξ(α|X1, . . . , Xn) =
(
∑

Xi + v)u+n

Γ(u + n)
α(u+n)−1e−α(

P

Xi+v)

which is the p.d.f. of Γ(u + n, v +
∑

Xi). Since the mean of Gamma distribution
Γ(α, β) with parameters α and β is equal to α/β, the Bayes estimator will be

α̂ =
�

(α|X1, . . . , Xn) =
u + n

v +
∑

Xi

.
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For large sample size n, we get

α̂ =
u
n

+ 1
v
n

+ X̄
≈ 1

X̄
.

Example. If the sample comes from Poisson distribution Π(λ) with p.d.f.

f(x|λ) =
λx

x!
e−λ for x = 0, 1, 2, . . .

then the likelihood function is

f(X1, . . . , Xn|λ) =
λ

P

Xi

∏
Xi!

e−nλ

and the posterior distribution will have the form

ξ(λ|X1, . . . , Xn) =
1

g(X1, . . . , Xn)

λ
P

Xi

∏
Xi!

e−nλξ(λ).

Since again the likelihood function resembles the Gamma distribution we will take
the prior to be a Gamma distribution Γ(u, v) in which case

ξ(λ|X1, . . . , Xn) =
1

g

vu

Γ(u)
λ(

P

Xi+u)−1e−(n+v)λ.

Since this looks like a Gamma distribution Γ(u +
∑

Xi, n + v) the posterior has no
choice but to be equal to this distribution and the Bayes estimator will be:

λ̂ =

∑
Xi + u

n + v
=

X̄ + u
n

1 + v
n

.


