Lecture 1

Estimation theory.

1.1 Introduction

Let us consider a set \mathcal{X} (probability space) which is the set of possible values that some random variables (random object) may take. Usually X will be a subset of \mathbb{R}, for example $\{0,1\},[0,1],[0, \infty), \mathbb{R}$, etc.
I. Parametric Statistics.

We will start by considering a family of distributions on \mathcal{X} :

- $\left\{\mathbb{P}_{\theta}, \theta \in \Theta\right\}$, indexed by parameter θ. Here, Θ is a set of possible parameters and probability \mathbb{P}_{θ} describes chances of observing values from subset of X, i.e. for $A \subseteq X, \mathbb{P}_{\theta}(A)$ is a probability to observe a value from A.
- Typical ways to describe a distribution:
- probability density function (p.d.f.),
- probability function (p.f.),
- cumulative distribution function (c.d.f.).

For example, if we denote by $N\left(\alpha, \sigma^{2}\right)$ a normal distribution with mean α and variance σ^{2}, then $\theta=\left(\alpha, \sigma^{2}\right)$ is a parameter for this family and $\Theta=\mathbb{R} \times[0, \infty)$.

Next we will assume that we are given $X=\left(X_{1}, \cdots, X_{n}\right)$ - independent identically distributed (i.i.d.) random variables on \mathcal{X}, drawn according to some distribution $\mathbb{P}_{\theta_{0}}$ from the above family, for some $\theta_{0} \in \Theta$, and suppose that θ_{0} is unknown. In this setting we will study the following questions.

1. Estimation Theory.

Based on the observations X_{1}, \cdots, X_{n} we would like to estimate unknown parameter θ_{0}, i.e. find $\hat{\theta}=\hat{\theta}\left(X_{1}, \cdots, X_{n}\right)$ such that $\hat{\theta}$ approximates θ_{0}. In this case we also want to understand how well $\hat{\theta}$ approximates θ_{0}.

2. Hypothesis Testing.

Decide which of the hypotheses about θ_{0} are likely or unlikely. Typical hypotheses:

- $\theta_{0}=\theta_{1}$? for some particular θ_{n} ?
- $\theta_{0} \gtrless \theta_{1}$
- $\theta_{0} \neq \theta_{1}$

Example: In a simple yes/no vote (or two candidate vote) our variable (vote) can take two values, i.e. we can take the space $\mathcal{X}=\{0,1\}$. Then the distribution is described by

$$
\mathbb{P}(1)=p, \mathbb{P}(0)=1-p
$$

for some parameter $p \in \Theta=[0,1]$. The true parameter p_{0} is unknown. If we conduct a poll by picking n people randomly and if X_{1}, \cdots, X_{n} are their votes then:
1.Estimation theory. What is a natural estimate of p_{0} ?

$$
\hat{p}=\frac{\#\left(1^{\prime} s \text { among } X_{1}, \cdots, X_{n}\right)}{n} \sim p_{0}
$$

How close is \hat{p} to p_{0} ?
2. Hypothesis testing. How likely or unlikely are the following:

- Hypothesis 1: $p_{0}>\frac{1}{2}$
- Hypothesis 2: $p_{0}<\frac{1}{2}$

II. Non-parametric Statistics

In the second part of the class the questions that we will study will be somewhat different. We will still assume that the observations $X=\left(X_{1}, \cdots, X_{n}\right)$ have unknown distribution \mathbb{P}, but we won't assume that \mathbb{P} comes from a certain parametric family $\left\{\mathbb{P}_{\theta}, \theta \in \Theta\right\}$. Examples of questions that may be asked in this case are the following:

- Does \mathbb{P} come from some parametric family $\left\{\mathbb{P}_{\theta}, \theta \in \Theta\right\}$?
- Is $\mathbb{P}=\mathbb{P}_{0}$ for some specific \mathbb{P}_{0} ?

If we have another sample $X^{\prime}=\left(X_{1}^{\prime}, \cdots, X_{m}^{\prime}\right)$ then,

- Do X and X^{\prime} have the same distribution?

If we have paired observations $\left(X_{1}, Y_{1}\right), \cdots,\left(X_{n}, Y_{n}\right)$:

- Are X and Y independent of each other?
- Classification/regression problem: predict Y as a function of X; i.e.,

$$
Y=f(X)+\text { small error term }
$$

